Development of a high angular resolution diffusion imaging human brain template

Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy.

[1]  Paul M. Thompson,et al.  Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions , 2010, NeuroImage.

[2]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[3]  J. Laidlaw,et al.  ANATOMY OF THE HUMAN BODY , 1967, The Ulster Medical Journal.

[4]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[5]  J. Pipe,et al.  Turboprop: Improved PROPELLER imaging , 2006, Magnetic resonance in medicine.

[6]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[7]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[8]  Babak A. Ardekani,et al.  Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans , 2005, Journal of Neuroscience Methods.

[9]  Dinggang Shen,et al.  SPHERE: SPherical Harmonic Elastic REgistration of HARDI data , 2011, NeuroImage.

[10]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[11]  Jan Sijbers,et al.  On the construction of an inter-subject diffusion tensor magnetic resonance atlas of the healthy human brain , 2008, NeuroImage.

[12]  Frans Vos,et al.  Dual Tensor Atlas Generation Based on a Cohort of Coregistered non-HARDI Datasets , 2009, MICCAI.

[13]  Khader M Hasan,et al.  Diffusion tensor quantification of the macrostructure and microstructure of human midsagittal corpus callosum across the lifespan , 2008, NMR in biomedicine.

[14]  P. Basser,et al.  Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. , 1996, Journal of magnetic resonance. Series B.

[15]  Jens Frahm,et al.  Self-diffusion NMR imaging using stimulated echoes , 1985 .

[16]  Robert L. Stevenson,et al.  Spatial Resolution Enhancement of Low-Resolution Image Sequences A Comprehensive Review with Directions for Future Research , 1998 .

[17]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[18]  Paul A. Yushkevich,et al.  Deformable Registration of Diffusion Tensor MR Images with Explicit Orientation Optimization , 2005, MICCAI.

[19]  Martin Styner,et al.  DTI registration in atlas based fiber analysis of infantile Krabbe disease , 2011, NeuroImage.

[20]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[21]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[22]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[23]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[24]  Stuart Crozier,et al.  Symmetric diffeomorphic registration of fibre orientation distributions , 2011, NeuroImage.

[25]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[26]  Arthur W. Toga,et al.  Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template , 2008, NeuroImage.

[27]  D. Le Bihan,et al.  A Novel Probabilistic Connectivity Atlas for the Human Connectome : The CONNECT/ARCHI Atlas , 2013 .

[28]  Shannon D. Gower-Winter,et al.  In vivo magnetic resonance imaging of sodium and diffusion in rat glioma at 21.1 T , 2012, Magnetic resonance in medicine.

[29]  D L Parker,et al.  Comparison of gradient encoding schemes for diffusion‐tensor MRI , 2001, Journal of magnetic resonance imaging : JMRI.

[30]  A. Pfefferbaum,et al.  Diffusion tensor imaging and aging , 2006, Neuroscience & Biobehavioral Reviews.

[31]  Konstantinos Arfanakis,et al.  Enhanced ICBM diffusion tensor template of the human brain , 2011, NeuroImage.

[32]  James C. Gee,et al.  A diffusion tensor brain template for Rhesus Macaques , 2012, NeuroImage.

[33]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[34]  Paul M. Thompson,et al.  LONI MiND: Metadata in NIfTI for DWI , 2010, NeuroImage.

[35]  Rachid Deriche,et al.  Multiple q-shell diffusion propagator imaging , 2011, Medical Image Anal..

[36]  S. Bouix,et al.  Building an Average Population HARDI Atlas , 2010 .

[37]  Konstantinos Arfanakis,et al.  A tractography comparison between turboprop and spin-echo echo-planar diffusion tensor imaging , 2008, NeuroImage.

[38]  Michael Elad,et al.  Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images , 1997, IEEE Trans. Image Process..

[39]  N. Papadakis,et al.  Minimal gradient encoding for robust estimation of diffusion anisotropy. , 2000, Magnetic resonance imaging.

[40]  Gady Agam,et al.  Development of a human brain diffusion tensor template , 2009, NeuroImage.

[41]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[42]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[43]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[44]  KONSTANTINOS ARFANAKIS,et al.  White Matter Tractography by Means of Turboprop Diffusion Tensor Imaging , 2005, Annals of the New York Academy of Sciences.

[45]  Fang-Cheng Yeh,et al.  NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction , 2011, NeuroImage.

[46]  Pamela Guevara,et al.  Towards a super-resolution CONNECT/ARCHI atlas of the white matter connectivity , 2013 .

[47]  D. Rueckert,et al.  A computational DTI template for aging studies , 2008 .

[48]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.