Harmonic (Quantum) Neural Networks

Harmonic functions are abundant in nature, appearing in limiting cases of Maxwell's, Navier-Stokes equations, the heat and the wave equation. Consequently, there are many applications of harmonic functions from industrial process optimisation to robotic path planning and the calculation of first exit times of random walks. Despite their ubiquity and relevance, there have been few attempts to incorporate inductive biases towards harmonic functions in machine learning contexts. In this work, we demonstrate effective means of representing harmonic functions in neural networks and extend such results also to quantum neural networks to demonstrate the generality of our approach. We benchmark our approaches against (quantum) physics-informed neural networks, where we show favourable performance.

[1]  Ricky T. Q. Chen,et al.  Neural Conservation Laws: A Divergence-Free Perspective , 2022, NeurIPS.

[2]  Eric R. Anschuetz,et al.  Quantum variational algorithms are swamped with traps , 2022, Nature communications.

[3]  V. Elfving,et al.  Quantum Extremal Learning , 2022, arXiv.org.

[4]  Patrick J. Coles,et al.  Group-Invariant Quantum Machine Learning , 2022, PRX Quantum.

[5]  I. Ceylan,et al.  Equivariant Quantum Graph Circuits , 2021, ICML.

[6]  Vincent E. Elfving,et al.  Quantum Model-Discovery , 2021, ArXiv.

[7]  Michael W. Mahoney,et al.  Characterizing possible failure modes in physics-informed neural networks , 2021, NeurIPS.

[8]  Annie E. Paine,et al.  Quantum Quantile Mechanics: Solving Stochastic Differential Equations for Generating Time‐Series , 2021, Advanced Quantum Technologies.

[9]  O. Kyriienko,et al.  Generalized quantum circuit differentiation rules , 2021, Physical Review A.

[10]  Bernhard Scholkopf,et al.  The Inductive Bias of Quantum Kernels , 2021, NeurIPS.

[11]  Ankit Srivastava,et al.  Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks , 2021, Computer Methods in Applied Mechanics and Engineering.

[12]  Lijun Qian,et al.  A Survey of Complex-Valued Neural Networks , 2021, ArXiv.

[13]  Maria Schuld,et al.  Quantum machine learning models are kernel methods , 2021, 2101.11020.

[14]  Steven G. Johnson,et al.  Physics-informed neural networks with hard constraints for inverse design , 2021, SIAM J. Sci. Comput..

[15]  M. Cerezo,et al.  Variational quantum algorithms , 2020, Nature Reviews Physics.

[16]  Jian-Wei Pan,et al.  Quantum computational advantage using photons , 2020, Science.

[17]  Annie E. Paine,et al.  Solving nonlinear differential equations with differentiable quantum circuits , 2020, Physical Review A.

[18]  H. Neven,et al.  Power of data in quantum machine learning , 2020, Nature Communications.

[19]  Stefan Woerner,et al.  The power of quantum neural networks , 2020, Nature Computational Science.

[20]  Nikola B. Kovachki,et al.  Fourier Neural Operator for Parametric Partial Differential Equations , 2020, ICLR.

[21]  Kishor Bharti,et al.  Iterative quantum-assisted eigensolver , 2020, Physical Review A.

[22]  Kohei Nakajima,et al.  Universal Approximation Property of Quantum Machine Learning Models in Quantum-Enhanced Feature Spaces. , 2020, Physical review letters.

[23]  N. Killoran,et al.  Estimating the gradient and higher-order derivatives on quantum hardware , 2020, 2008.06517.

[24]  Paris Perdikaris,et al.  When and why PINNs fail to train: A neural tangent kernel perspective , 2020, J. Comput. Phys..

[25]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[26]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[27]  Ameya D. Jagtap,et al.  Extended Physics-informed Neural Networks (XPINNs): A Generalized Space-Time Domain Decomposition based Deep Learning Framework for Nonlinear Partial Differential Equations , 2020, AAAI Spring Symposium: MLPS.

[28]  Miles Cranmer,et al.  Lagrangian Neural Networks , 2020, ICLR 2020.

[29]  John G. Rarity,et al.  Learning models of quantum systems from experiments , 2020, Nature Physics.

[30]  Thomas Bo Schön,et al.  Linearly Constrained Neural Networks , 2020, ArXiv.

[31]  Jin-Guo Liu,et al.  Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design , 2019, Quantum.

[32]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[33]  John C. Platt,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[34]  Jason Yosinski,et al.  Hamiltonian Neural Networks , 2019, NeurIPS.

[35]  Pierre Sens,et al.  DeepMoD: Deep learning for model discovery in noisy data , 2019, J. Comput. Phys..

[36]  Paris Perdikaris,et al.  Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations , 2019, J. Comput. Phys..

[37]  F. Brandão,et al.  Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution , 2019, Nature Physics.

[38]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[39]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[40]  H. Parthasarathy Electrodynamics , 2018, Developments in Mathematical and Conceptual Physics.

[41]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[42]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[43]  Amir Barati Farimani,et al.  Weakly-Supervised Deep Learning of Heat Transport via Physics Informed Loss , 2018, ArXiv.

[44]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[45]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[46]  Maria Schuld,et al.  Quantum Machine Learning in Feature Hilbert Spaces. , 2018, Physical review letters.

[47]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[48]  Ronny Thomale,et al.  Method to identify parent Hamiltonians for trial states , 2018, Physical Review B.

[49]  Rupak Biswas,et al.  Quantum Approximate Optimization with Hard and Soft Constraints , 2017 .

[50]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[51]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[52]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[53]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[54]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[55]  Shenghao Xu,et al.  Supplementary Information , 2014, States at War, Volume 3.

[56]  Savvas G. Loizou,et al.  The Multi-Agent Navigation Transformation: Tuning-Free Multi-Robot Navigation , 2014, Robotics: Science and Systems.

[57]  Steven H. Weintraub,et al.  Differential Forms: Theory and Practice , 2014 .

[58]  Nathan Wiebe,et al.  Robust online Hamiltonian learning , 2012, TQC.

[59]  J. Irsa,et al.  On reconstruction of three-dimensional harmonic functions from discrete data , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[60]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[61]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[62]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[63]  Moslem Kazemi,et al.  Robotic navigation using harmonic function-based probabilistic roadmaps , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[64]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[65]  Ibrahim Akduman,et al.  Electrostatic imaging via conformal mapping , 2002 .

[66]  Paulo Martins Engel,et al.  Exploration method using harmonic functions , 2002, Robotics Auton. Syst..

[67]  Dimitrios I. Fotiadis,et al.  Artificial neural networks for solving ordinary and partial differential equations , 1997, IEEE Trans. Neural Networks.

[68]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[69]  Roderic A. Grupen,et al.  The applications of harmonic functions to robotics , 1993, J. Field Robotics.

[70]  Daniel E. Koditschek,et al.  Exact robot navigation using artificial potential functions , 1992, IEEE Trans. Robotics Autom..

[71]  Jorge Nocedal,et al.  On the limited memory BFGS method for large scale optimization , 1989, Math. Program..

[72]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[73]  Colin Giles,et al.  Learning, invariance, and generalization in high-order neural networks. , 1987, Applied optics.

[74]  Andrew Chang Quaternionic analysis , 1979, Mathematical Proceedings of the Cambridge Philosophical Society.

[75]  Peter Secretan Learning , 1965, Mental Health.

[76]  A. Wills,et al.  Physics-informed machine learning , 2021, Nature Reviews Physics.

[77]  Maria Schuld,et al.  Machine Learning with Quantum Computers , 2021, Quantum Science and Technology.

[78]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[79]  J. Blair Perot,et al.  Differential forms for scientists and engineers , 2014, J. Comput. Phys..

[80]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[81]  T. Paul,et al.  Quantum computation and quantum information , 2001, SOEN.

[82]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[83]  Dan Ventura,et al.  Quantum Neural Networks , 2000 .

[84]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[85]  D. Gaier,et al.  Lectures on complex approximation , 1987 .

[86]  S. Lang Complex Analysis , 1977 .