A biarc based subdivision scheme for space curve interpolation
暂无分享,去创建一个
[1] Nira Dyn,et al. Geometric conditions for tangent continuity of interpolatory planar subdivision curves , 2012, Comput. Aided Geom. Des..
[2] Josef Hoschek. Circular splines , 1992, Comput. Aided Des..
[3] Guozhao Wang,et al. Incenter subdivision scheme for curve interpolation , 2010, Comput. Aided Geom. Des..
[4] T. J. Sharrock. Biarcs in three dimensions , 1987 .
[5] Nira Dyn,et al. Geometrically Controlled 4-Point Interpolatory Schemes , 2005, Advances in Multiresolution for Geometric Modelling.
[6] Tim N. T. Goodman,et al. Shape preserving interpolation by space curves , 1997, Comput. Aided Geom. Des..
[7] G. D. Sandel. Zur Geometrie der Korbbgen . , 1937 .
[8] Panagiotis D. Kaklis,et al. Shape-preserving interpolation in R3 , 1997 .
[9] K. M. Bolton. Biarc curves , 1975, Comput. Aided Des..
[10] Neil A. Dodgson,et al. An interpolating 4-point C2 ternary stationary subdivision scheme , 2002, Comput. Aided Geom. Des..
[11] Kimon P. Valavanis,et al. Using a biarc filter to compute curvature extremes of NURBS curves , 2009, Engineering with Computers.
[12] Xunnian Yang. Normal based subdivision scheme for curve design , 2006, Comput. Aided Geom. Des..
[13] M. Sabin. The use of piecewise forms for the numerical representation of shape , 1976 .
[14] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[15] Weiyin Ma,et al. Matching admissible G2 Hermite data by a biarc-based subdivision scheme , 2012, Comput. Aided Geom. Des..
[16] Nira Dyn,et al. Interpolatory convexity-preserving subdivision schemes for curves and surfaces , 1992, Comput. Aided Des..
[17] Neil A. Dodgson,et al. A Circle-Preserving Variant of the Four-Point Subdivision Scheme , 2012 .
[18] Francesca Pelosi,et al. Shape-Preserving Approximation by Space Curves , 2001, Numerical Algorithms.
[19] P. Bézier. Numerical control : mathematics and applications , 1972 .