Theoretical Charge Density Analysis and Nonlinear Optical Properties of Quasi-Planar 1-Aryl(hetaryl)-5-phenylpent-1-en-4-yn-3-ones

The topological features of intermolecular bonding have been investigated by theoretical charge density analysis of six crystalline 1-aryl(hetaryl)-5-phenylpent-1-en-4-yn-3-ones. The energies of intermolecular interactions have been estimated from intermolecular bond critical point properties. The molecules crystallize in three supramolecular synthons through 2–6 C–H···O═C interactions, and the binding energy was found to be characteristic for each synthon and comparable to that of a single O–H···O hydrogen bond. Comparison of C–H···O bonding at quasi-planar pentenynones, chalcones, and polyenones allowed making suggestions about a possible synthetic route to acentric materials with nonlinear optical properties based on these molecules.

[1]  K. Monogarov,et al.  Novel highly energetic pyrazoles: N-fluorodinitromethyl and N-[(difluoroamino)dinitromethyl] derivatives , 2015 .

[2]  K. Monogarov,et al.  Novel Highly Energetic Pyrazoles: N-Trinitromethyl-Substituted Nitropyrazoles. , 2015, Chemistry, an Asian journal.

[3]  Robin Taylor,et al.  Quantifying the symmetry preferences of intermolecular interactions in organic crystal structures , 2015 .

[4]  Y. Nelyubina,et al.  Experimental charge density evidence for pnicogen bonding in a crystal of ammonium chloride. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[5]  V. Tsirelson,et al.  Interplay between non-covalent interactions in complexes and crystals with halogen bonds , 2014 .

[6]  Abdullah M Asiri,et al.  Can short- and middle-range hybrids describe the hyperpolarizabilities of long-range charge-transfer compounds? , 2014, The journal of physical chemistry. A.

[7]  A. P. Voronin,et al.  Evaluation of the Lattice Energy of the Two-Component Molecular Crystals Using Solid-State Density Functional Theory , 2014 .

[8]  K. Lyssenko,et al.  Role of Weak Intermolecular Interactions in the Crystal Structure of Tetrakis-furazano[3,4-c:3 ',4 '-g:3 '',4 ''-k:3 ''', 4 '''-o][1,2,5,6,9,10,13,14]octaazacyclohexadecine and Its Solvates , 2014 .

[9]  A. Vologzhanina,et al.  Intermolecular Interactions and Second-Harmonic Generation Properties of (E)-1,5-Diarylpentenyn-1-ones , 2014 .

[10]  Robin Taylor,et al.  Which intermolecular interactions have a significant influence on crystal packing , 2014 .

[11]  G. Scuseria,et al.  A computational study of the nonlinear optical properties of carbazole derivatives: theory refines experiment , 2014, Theoretical Chemistry Accounts.

[12]  V. M. Chernyshev,et al.  A direct approach to a 6-hetarylamino[1,2,4]triazolo[4,3-b][1,2,4,5]tetrazine library. , 2014, Organic letters.

[13]  A. Vologzhanina,et al.  Synthesis of 1,5-disubstituted (E)-pent-2-en-4-yn-1-ones , 2013, Russian Journal of Organic Chemistry.

[14]  L. Loconte,et al.  Competing C═O···C═O, C–H···O, Cl···O, and Cl···Cl Interactions Governing the Structural Phase Transition of 2,6-Dichloro-p-benzoquinone at Tc=122.6 K , 2013 .

[15]  A. Masunov,et al.  Supramolecular step in design of nonlinear optical materials: Effect of π...π stacking aggregation on hyperpolarizability. , 2013, Journal of Chemical Physics.

[16]  Tjelvar S. G. Olsson,et al.  Evaluation of molecular crystal structures using Full Interaction Maps , 2013 .

[17]  A. V. Shishkina,et al.  Cl···Cl interactions in molecular crystals: insights from the theoretical charge density analysis. , 2013, The journal of physical chemistry. A.

[18]  S. Lebègue,et al.  Chalcogen Bonding: Experimental and Theoretical Determinations from Electron Density Analysis. Geometrical Preferences Driven by Electrophilic–Nucleophilic Interactions , 2013 .

[19]  Thomas Bredow,et al.  Consistent Gaussian basis sets of triple‐zeta valence with polarization quality for solid‐state calculations , 2013, J. Comput. Chem..

[20]  T. Row,et al.  Charge Density Analysis of Ferulic Acid: Robustness of a Trifurcated C–H···O Hydrogen Bond , 2012 .

[21]  S. Lebègue,et al.  Charge Density Analysis and Topological Properties of Hal3-Synthons and Their Comparison with Competing Hydrogen Bonds , 2012 .

[22]  S. Lebègue,et al.  Periodic projector augmented wave density functional calculations on the hexachlorobenzene crystal and comparison with the experimental multipolar charge density model. , 2011, The journal of physical chemistry. A.

[23]  D. Macfarlane,et al.  Structural analysis of low melting organic salts: perspectives on ionic liquids. , 2010, Physical chemistry chemical physics : PCCP.

[24]  Ian J Bruno,et al.  Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data. , 2010, Acta crystallographica. Section B, Structural science.

[25]  R. Butcher,et al.  A monoclinic polymorph of 1-(4-chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one , 2010, Acta crystallographica. Section E, Structure reports online.

[26]  A. Masunov,et al.  Computational search for nonlinear optical materials: are polarization functions important in the hyperpolarizability predictions of molecules and aggregates? , 2009 .

[27]  Yi Liao,et al.  Electronic hyperpolarizabilities for donor-acceptor molecules with long conjugated bridges: calculations versus experiment. , 2009, The journal of physical chemistry. A.

[28]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[29]  M. Göbel,et al.  Development and Testing of Energetic Materials: The Concept of High Densities Based on the Trinitroethyl Functionality , 2009 .

[30]  A. Masunov,et al.  Conformational dependence of the first molecular hyperpolarizability in the computational design of nonlinear optical materials for optical switching , 2008 .

[31]  J. Bernstein,et al.  Disappearing and reappearing polymorphism in p-methylchalcone , 2008 .

[32]  A. Masunov,et al.  Applicability of hybrid density functional theory methods to calculation of molecular hyperpolarizability. , 2008, The Journal of chemical physics.

[33]  Kevin E. Riley,et al.  Nature and magnitude of aromatic stacking of nucleic acid bases. , 2008, Physical chemistry chemical physics : PCCP.

[34]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[35]  Chaok Seok,et al.  Strength of Calpha-H...O=C hydrogen bonds in transmembrane proteins. , 2008, The journal of physical chemistry. B.

[36]  B. V. Ashalatha,et al.  (2E)-1-(3-Bromo­thien-2-yl)-3-phenyl­prop-2-en-1-one , 2007 .

[37]  P. S. Patil,et al.  3-(5-Bromo-2-thien­yl)-1-(4-nitro­phen­yl)prop-2-en-1-one , 2007 .

[38]  E. Treadwell 4′‐Methyl­chalcone , 2006 .

[39]  P. Luger,et al.  MolIso– a program for colour‐mapped iso‐surfaces , 2006 .

[40]  A. Katritzky,et al.  Alkyl, unsaturated, (hetero)aryl, and N-protected alpha-amino ketones by acylation of organometallic reagents. , 2006, The Journal of organic chemistry.

[41]  B. V. Ashalatha,et al.  Synthesis, crystal growth and studies on non-linear optical property of new chalcones , 2006 .

[42]  M. Antipin,et al.  Molecular and crystal design of nonlinear optical organic materials , 2006 .

[43]  Xiao‐Yang Qiu,et al.  (E)-1-(4-Chlorophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one , 2006 .

[44]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[45]  T. N. Guru Row,et al.  Exploring the lower limit in hydrogen bonds: analysis of weak C-H...O and C-H...pi interactions in substituted coumarins from charge density analysis. , 2005, The journal of physical chemistry. A.

[46]  T. Row,et al.  Concomitant polymorphism in 3-acetylcoumarin: role of weak C-H···O and C-H···π interactions , 2004 .

[47]  Suzanne Johnson,et al.  Crystal polymorphism in 1-butyl-3-methylimidazolium halides: supporting ionic liquid formation by inhibition of crystallizationElectronic supplementary information (ESI) available: packing diagrams for I and II; table of closest contacts for I, I-Br and II. See http://www.rsc.org/suppdata/cc/b3/b304 , 2003 .

[48]  V. Tsirelson,et al.  WinXPRO: a program for calculating crystal and molecular properties using multipole parameters of the electron density , 2002 .

[49]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[50]  T. Steiner The hydrogen bond in the solid state. , 2002, Angewandte Chemie.

[51]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[52]  Yulai Hu,et al.  A FACILE SYNTHESIS OF CONJUGATED ACETYL KETONES BY Pd(II)-Cu(I) DOPED KF/Al2O3-CATALYZED UNDER MICROWAVE IRRADIATION , 2001 .

[53]  P. Coppens,et al.  The experimental charge-density approach in the evaluation of intermolecular interactions. Application of a new module of the XD programming package to several solids including a pentapeptide. , 2000, Acta crystallographica. Section A, Foundations of crystallography.

[54]  Rubicelia Vargas,et al.  How Strong Is the Cα−H···OC Hydrogen Bond? , 2000 .

[55]  V. Tsirelson,et al.  Electron-density-based calculations of intermolecular energy: case of urea. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[56]  G. Desiraju,et al.  Cubanecarboxylic Acids. Crystal Engineering Considerations and the Role of C−H···O Hydrogen Bonds in Determining O−H···O Networks , 1999 .

[57]  Feil,et al.  Electron density study of urea using TDS-corrected X-ray diffraction data: quantitative comparison of experimental and theoretical results. , 1999, Acta crystallographica. Section B, Structural science.

[58]  Claude Lecomte,et al.  Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities , 1998 .

[59]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[60]  M. C. Etter,et al.  Induction of noncentrosymmetry by polar hydrogen-bonded chains in nitroaniline crystals , 1992 .

[61]  M. C. Etter Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .

[62]  Olga Kennard,et al.  Hydrogen-bond geometry in organic crystals , 1984 .

[63]  Olga Kennard,et al.  Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds , 1982 .

[64]  S. Kashino,et al.  The structures of 5‐phenyl‐2,4‐pentadienoic acid (PPA) and 1,5‐diphenyl‐2,4‐pentadien‐1‐one (DPO) , 1980 .

[65]  K. Lyssenko Analysis of supramolecular architectures: beyond molecular packing diagrams , 2012 .

[66]  Larry R Dalton,et al.  Electric field poled organic electro-optic materials: state of the art and future prospects. , 2010, Chemical reviews.

[67]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[68]  B. Trofimov,et al.  2-(2-Benzoylethynyl)-5-phenylpyrrole: fixation of cis- and trans-rotamers in a crystal state , 2005 .

[69]  T. Steiner Unrolling the hydrogen bond properties of C–H···O interactions , 1997 .

[70]  G. Desiraju,et al.  Non-centrosymmetry in organic crystals: a study of molecular conformation in some substituted tolans , 1988 .

[71]  D. Rabinovich Topochemistry. Part XXX. Crystal and molecular structures of chalcone , 1970 .