Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty

For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.

[1]  Gianluca Iaccarino,et al.  A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations , 2013 .

[2]  Richard P. Dwight,et al.  Simplex-stochastic collocation method with improved scalability , 2016, J. Comput. Phys..

[3]  K. Carlson,et al.  Turbulent Flows , 2020, Finite Analytic Method in Flows and Heat Transfer.

[4]  Adrian E. Raftery,et al.  Bayesian model averaging: a tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by the authors , 1999 .

[5]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[6]  S. Thangam,et al.  Turbulent Flow Past a Backward-Facing Step: A Critical Evaluation of Two-Equation Models , 1992 .

[7]  Hester Bijl,et al.  Bayesian estimates of parameter variability in the k-ε turbulence model , 2014, J. Comput. Phys..

[8]  Jeroen A. S. Witteveen,et al.  Simplex Stochastic Collocation with Random Sampling and Extrapolation for Nonhypercube Probability Spaces , 2012, SIAM J. Sci. Comput..

[9]  J. Witteveen,et al.  Uncertainty quantification of the transonic flow around the RAE 2822 airfoil , 2010 .

[10]  Gaël Varoquaux,et al.  Mayavi: 3D Visualization of Scientific Data , 2010, Computing in Science & Engineering.

[11]  D. Wilcox Turbulence modeling for CFD , 1993 .

[12]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[13]  U. Schumann Realizability of Reynolds-Stress Turbulence Models , 1977 .

[14]  G. Iaccarino,et al.  Epistemic uncertainty quantification for RANS modeling of the flow over a wavy wall By , 2012 .

[15]  Anastasios S. Lyrintzis,et al.  The lagRST Model: A Turbulence Model for Non-Equilibrium Flows , 2001 .

[16]  Gianluca Iaccarino,et al.  Eigenspace perturbations for uncertainty estimation of single-point turbulence closures , 2017 .

[17]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[18]  Gordon Kindlmann,et al.  Superquadric tensor glyphs , 2004, VISSYM'04.

[19]  J. Templeton Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty , 2015 .

[20]  William Gropp,et al.  CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences , 2014 .

[21]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[22]  Todd A. Oliver,et al.  Bayesian uncertainty quantification applied to RANS turbulence models , 2011 .

[23]  David M. Driver,et al.  Backward-facing step measurements at low Reynolds number, Re(sub h)=5000 , 1994 .

[24]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[25]  Paul A. Durbin,et al.  Realizability of second-moment closure via stochastic analysis , 1994, Journal of Fluid Mechanics.

[26]  James Bridges,et al.  The NASA Subsonic Jet Particle Image Velocimetry (Piv) Dataset , 2013 .

[27]  Sai Hung Cheung,et al.  Bayesian uncertainty analysis with applications to turbulence modeling , 2011, Reliab. Eng. Syst. Saf..

[28]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[29]  Gianluca Iaccarino,et al.  Modeling Structural Uncertainties in Reynolds-Averaged Computations of Shock/Boundary Layer Interactions , 2011 .

[30]  F. Durst,et al.  Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches , 2007 .

[31]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[32]  G. Iaccarino,et al.  A return to eddy viscosity model for epistemic UQ in RANS closures , 2017, 1705.05354.

[33]  P. Moin,et al.  Direct numerical simulation of turbulent flow over a backward-facing step , 1997, Journal of Fluid Mechanics.

[34]  Y. Marzouk,et al.  A stochastic collocation approach to Bayesian inference in inverse problems , 2009 .

[35]  A. A. Mishra,et al.  RANS predictions for high-speed flows using enveloping models , 2017, 1704.01699.

[36]  P. Cinnella,et al.  Predictive RANS simulations via Bayesian Model-Scenario Averaging , 2014, J. Comput. Phys..

[37]  Gianluca Iaccarino,et al.  Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures , 2013 .

[38]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[39]  Alistair Revell,et al.  A Stress-Strain Lag Eddy Viscosity Model for Unsteady Mean Flow , 2005 .

[40]  J. Rotta,et al.  Statistische Theorie nichthomogener Turbulenz , 1951 .