The Physics of Light Emission in Halide Perovskite Devices

Light emission is a critical property that must be maximized and controlled to reach the performance limits in optoelectronic devices such as photovoltaic solar cells and light-emitting diodes. Halide perovskites are an exciting family of materials for these applications owing to uniquely promising attributes that favor strong luminescence in device structures. Herein, the current understanding of the physics of light emission in state-of-the-art metal-halide perovskite devices is presented. Photon generation and management, and how these can be further exploited in device structures, are discussed. Key processes involved in photoluminescence and electroluminescence in devices as well as recent efforts to reduce nonradiative losses in neat films and interfaces are discussed. Finally, pathways toward reaching device efficiency limits and how the unique properties of perovskites provide a tremendous opportunity to significantly disrupt both the power generation and lighting industries are outlined.

[1]  Henry J. Snaith,et al.  Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites , 2015, 1504.07025.

[2]  Stephen R. Forrest,et al.  Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays , 2002 .

[3]  Myles A. Steiner,et al.  Optical enhancement of the open-circuit voltage in high quality GaAs solar cells , 2013 .

[4]  Sandeep Kumar Pathak,et al.  Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals , 2017 .

[5]  Alain Goriely,et al.  Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States , 2014 .

[6]  Rachel C. Kurchin,et al.  Investigation of Bismuth Triiodide (BiI3) for Photovoltaic Applications. , 2015, The journal of physical chemistry letters.

[7]  S. Luryi,et al.  Radiation efficiency of heavily doped bulk n-InP semiconductor , 2010, 1003.6095.

[8]  R. Friend,et al.  Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size. , 2017, ACS nano.

[9]  T. Markvart,et al.  Impact of Small Phonon Energies on the Charge-Carrier Lifetimes in Metal-Halide Perovskites. , 2018, The journal of physical chemistry letters.

[10]  N. Wang,et al.  Interfacial Control Toward Efficient and Low‐Voltage Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[11]  Philippe Caroff,et al.  Doping-enhanced radiative efficiency enables lasing in unpassivated GaAs nanowires , 2016, Nature Communications.

[12]  G. Cody Urbach edge of crystalline and amorphous silicon : a personal review , 1992 .

[13]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[14]  Guangda Niu,et al.  Lead-Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots. , 2016, Angewandte Chemie.

[15]  S. Mhaisalkar,et al.  Perovskite Materials for Light‐Emitting Diodes and Lasers , 2016, Advanced materials.

[16]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[17]  Z. Yin,et al.  Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes , 2017, Nature Communications.

[18]  Song Jin,et al.  Screening in crystalline liquids protects energetic carriers in hybrid perovskites , 2016, Science.

[19]  Laura M Herz,et al.  Homogeneous Emission Line Broadening in the Organo Lead Halide Perovskite CH3NH3PbI3-xClx. , 2014, The journal of physical chemistry letters.

[20]  M. Johnston,et al.  Hybrid Perovskites: Prospects for Concentrator Solar Cells , 2018, Advanced science.

[21]  S. Stranks Nonradiative Losses in Metal Halide Perovskites , 2017 .

[22]  Rachel C. Kurchin,et al.  Searching for “Defect-Tolerant” Photovoltaic Materials: Combined Theoretical and Experimental Screening , 2017 .

[23]  Yongbo Yuan,et al.  Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability. , 2016, Accounts of chemical research.

[24]  Chang-Lyoul Lee,et al.  Multicolored Organic/Inorganic Hybrid Perovskite Light‐Emitting Diodes , 2015, Advanced materials.

[25]  Stephen R. Forrest,et al.  Measuring the Efficiency of Organic Light‐Emitting Devices , 2003 .

[26]  Barry P Rand,et al.  Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites , 2017, Nature Photonics.

[27]  S. Denbaars,et al.  Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening , 2004 .

[28]  R. T. Ross,et al.  Some Thermodynamics of Photochemical Systems , 1967 .

[29]  C. Adachi,et al.  Highly efficient organic light-emitting diodes by delayed fluorescence , 2013 .

[30]  V. Bulović,et al.  The Impact of Atmosphere on the Local Luminescence Properties of Metal Halide Perovskite Grains , 2018, Advanced materials.

[31]  Luis M. Pazos-Outón,et al.  Research data supporting: "Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling" , 2016 .

[32]  J. Ball,et al.  Defects in perovskite-halides and their effects in solar cells , 2016, Nature Energy.

[33]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[34]  L. You,et al.  Giant photostriction in organic–inorganic lead halide perovskites , 2016, Nature Communications.

[35]  Henry J Snaith,et al.  Metal-halide perovskites for photovoltaic and light-emitting devices. , 2015, Nature nanotechnology.

[36]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[37]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[38]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[39]  Richard H. Friend,et al.  Photon recycling in lead iodide perovskite solar cells , 2016, Science.

[40]  K. Musselman,et al.  Synthesis and modeling of uniform complex metal oxides by close-proximity atmospheric pressure chemical vapor deposition. , 2015, ACS applied materials & interfaces.

[41]  R. D. Cunningham,et al.  Variation of photoluminescence with carrier concentration in GaN , 1972 .

[42]  Rachel C. Kurchin,et al.  Strongly Enhanced Photovoltaic Performance and Defect Physics of Air‐Stable Bismuth Oxyiodide (BiOI) , 2017, Advanced materials.

[43]  Maksym V. Kovalenko,et al.  Properties and potential optoelectronic applications of lead halide perovskite nanocrystals , 2017, Science.

[44]  Oleksandr Voznyy,et al.  Perovskite energy funnels for efficient light-emitting diodes. , 2016, Nature nanotechnology.

[45]  David Cahen,et al.  Hybrid organic—inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties , 2016 .

[46]  Richard H. Friend,et al.  Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations , 2000 .

[47]  D. Ginger,et al.  Electroabsorption Spectroscopy Measurements of the Exciton Binding Energy, Electron–Hole Reduced Effective Mass, and Band Gap in the Perovskite CH3NH3PbI3 , 2016 .

[48]  Laura M Herz,et al.  High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites , 2013, Advanced materials.

[49]  J. Galisteo‐López,et al.  Environmental Effects on the Photophysics of Organic–Inorganic Halide Perovskites , 2015, The journal of physical chemistry letters.

[50]  Wei Zhang,et al.  Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells. , 2015, Angewandte Chemie.

[51]  P. Smet,et al.  Hybrid remote quantum dot/powder phosphor designs for display backlights , 2016, Light: Science & Applications.

[52]  Kaibo Zheng,et al.  Mechanistic insights into perovskite photoluminescence enhancement: light curing with oxygen can boost yield thousandfold. , 2015, Physical chemistry chemical physics : PCCP.

[53]  Oleksandr Voznyy,et al.  Quantum-dot-in-perovskite solids , 2015, Nature.

[54]  H. Atwater,et al.  Photonic design principles for ultrahigh-efficiency photovoltaics. , 2012, Nature materials.

[55]  Aron Walsh,et al.  Indirect to direct bandgap transition in methylammonium lead halide perovskite , 2016, 1609.07036.

[56]  David S. Ginger,et al.  Photoluminescence Lifetimes Exceeding 8 μs and Quantum Yields Exceeding 30% in Hybrid Perovskite Thin Films by Ligand Passivation , 2016 .

[57]  G. Eperon,et al.  Charge Carriers in Planar and Meso-Structured Organic-Inorganic Perovskites: Mobilities, Lifetimes, and Concentrations of Trap States. , 2015, The journal of physical chemistry letters.

[58]  Dawei Di,et al.  Efficient Triplet Exciton Fusion in Molecularly Doped Polymer Light‐Emitting Diodes , 2017, Advanced materials.

[59]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[60]  Felix Deschler,et al.  Bright light-emitting diodes based on organometal halide perovskite. , 2014, Nature nanotechnology.

[61]  Eli Yablonovitch,et al.  Fundamental Efficiency Limit of Lead Iodide Perovskite Solar Cells , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[62]  Ivan Mora-Sero,et al.  Bright Visible-Infrared Light Emitting Diodes Based on Hybrid Halide Perovskite with Spiro-OMeTAD as a Hole-Injecting Layer. , 2015, The journal of physical chemistry letters.

[63]  R. Friend,et al.  Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic-Inorganic Perovskites in Light-Emitting Diodes. , 2017, The journal of physical chemistry letters.

[64]  S. Haque,et al.  Fast oxygen diffusion and iodide defects mediate oxygen-induced degradation of perovskite solar cells , 2017, Nature Communications.

[65]  Yizheng Jin,et al.  Quantum‐Dot Light‐Emitting Diodes for Large‐Area Displays: Towards the Dawn of Commercialization , 2017, Advanced materials.

[66]  W. Tisdale,et al.  Tunable Light-Emitting Diodes Utilizing Quantum-Confined Layered Perovskite Emitters , 2017 .

[67]  Q. Quan,et al.  Reducing Architecture Limitations for Efficient Blue Perovskite Light‐Emitting Diodes , 2018, Advanced materials.

[68]  Thomas Kirchartz,et al.  Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells , 2015 .

[69]  S. Ogale,et al.  Lead-Free Perovskite Semiconductors Based on Germanium–Tin Solid Solutions: Structural and Optoelectronic Properties , 2018 .

[70]  L. Kronik,et al.  Local Polar Fluctuations in Lead Halide Perovskite Crystals. , 2016, Physical review letters.

[71]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[72]  U. Farooq,et al.  High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots. , 2017, ACS nano.

[73]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[74]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[75]  Henry J Snaith,et al.  Present status and future prospects of perovskite photovoltaics , 2018, Nature Materials.

[76]  R. Friend,et al.  Preparation of Single-Phase Films of CH3NH3Pb(I1-xBrx)3 with Sharp Optical Band Edges. , 2014, The journal of physical chemistry letters.

[77]  Himchan Cho,et al.  Metal halide perovskite light emitters , 2016, Proceedings of the National Academy of Sciences.

[78]  P. Kamat,et al.  Spatially Non-uniform Trap State Densities in Solution-Processed Hybrid Perovskite Thin Films. , 2016, The journal of physical chemistry letters.

[79]  T. Buonassisi,et al.  Promises and challenges of perovskite solar cells , 2017, Science.

[80]  Julia M. Phillips,et al.  Physics and applications of organic microcavity light emitting diodes , 1996 .

[81]  Richard H. Friend,et al.  Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes , 2015, Science.

[82]  Yasuhiko Arakawa,et al.  Enhanced light emission from an organic photonic crystal with a nanocavity , 2005 .

[83]  P. Ajayan,et al.  Stable Light‐Emitting Diodes Using Phase‐Pure Ruddlesden–Popper Layered Perovskites , 2018, Advanced materials.

[84]  V. Bulović,et al.  Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. , 2017, Nature Materials.

[85]  R. Friend,et al.  Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications , 2015, Nano letters.

[86]  Dane W. deQuilettes,et al.  The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication. , 2015, ACS nano.

[87]  Donal D. C. Bradley,et al.  Angular Dependence of the Emission from a Conjugated Polymer Light‐Emitting Diode: Implications for efficiency calculations , 1994 .

[88]  Laura M. Herz,et al.  Charge-Carrier Dynamics in Organic-Inorganic Metal Halide Perovskites. , 2016, Annual review of physical chemistry.

[89]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[90]  M. Green,et al.  Energy conversion approaches and materials for high-efficiency photovoltaics. , 2016, Nature materials.

[91]  A. Walsh,et al.  Research Update: Relativistic origin of slow electron-hole recombination in hybrid halide perovskite solar cells , 2016, 1604.04500.

[92]  Jasmine P. H. Rivett,et al.  High-performance light-emitting diodes based on carbene-metal-amides , 2017, Science.

[93]  Henry J. Snaith,et al.  The perils of solar cell efficiency measurements , 2012, Nature Photonics.

[94]  Dawei Di,et al.  Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. , 2015, Nano letters.

[95]  Antonio Abate,et al.  Perovskite Solar Cells Go Lead Free , 2017 .

[96]  Shane Johnson,et al.  Temperature dependence of the Urbach edge in GaAs , 1995 .

[97]  Olivier Durand,et al.  Light-induced lattice expansion leads to high-efficiency perovskite solar cells , 2018, Science.

[98]  L. Kronik,et al.  Light-induced picosecond rotational disordering of the inorganic sublattice in hybrid perovskites , 2017, Science Advances.

[99]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[100]  S. Stranks,et al.  Highly Tunable Colloidal Perovskite Nanoplatelets through Variable Cation, Metal, and Halide Composition. , 2016, ACS nano.

[101]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[102]  D. Ginger,et al.  Impact of microstructure on local carrier lifetime in perovskite solar cells , 2015, Science.

[103]  R. Friend,et al.  Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer , 1999 .

[104]  Rachel C. Kurchin,et al.  Perovskite-Inspired Photovoltaic Materials: Toward Best Practices in Materials Characterization and Calculations , 2017 .

[105]  Guglielmo Lanzani,et al.  Excitons versus free charges in organo-lead tri-halide perovskites , 2014, Nature Communications.

[106]  Henk J. Bolink,et al.  Radiative efficiency of lead iodide based perovskite solar cells , 2014, Scientific Reports.

[107]  A. Scherer,et al.  30% external quantum efficiency from surface textured, thin‐film light‐emitting diodes , 1993 .

[108]  Giovanni Bongiovanni,et al.  Correlated electron–hole plasma in organometal perovskites , 2014, Nature Communications.

[109]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[110]  Richard K. Ahrenkiel,et al.  Ultralong minority‐carrier lifetime epitaxial GaAs by photon recycling , 1989 .

[111]  S. Stranks,et al.  Revisiting photocarrier lifetimes in photovoltaics , 2016, Nature Photonics.

[112]  Feng Gao,et al.  Highly Efficient Perovskite Nanocrystal Light‐Emitting Diodes Enabled by a Universal Crosslinking Method , 2016, Advanced materials.

[113]  Qiang Guo,et al.  Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes , 2018, Nature Communications.

[114]  Luis M. Pazos-Outón,et al.  Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency , 2018 .

[115]  A. Gocalinska,et al.  Direct or Indirect Bandgap in Hybrid Lead Halide Perovskites? , 2018 .

[116]  Smith,et al.  Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. , 1996, Physical review letters.

[117]  H. Snaith Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells , 2013 .

[118]  Jinxiang Deng,et al.  Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation , 2018, Nature Communications.

[119]  Jay B. Patel,et al.  Efficient perovskite solar cells by metal ion doping , 2016 .

[120]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[121]  Shijing Sun,et al.  Fundamental Carrier Lifetime Exceeding 1 µs in Cs2AgBiBr6 Double Perovskite , 2018 .

[122]  Martin A. Green,et al.  Radiative efficiency of state‐of‐the‐art photovoltaic cells , 2012 .

[123]  Edward P. Booker,et al.  Maximizing and stabilizing luminescence from halide perovskites with potassium passivation , 2018, Nature.

[124]  Paul L. Burn,et al.  Electro-optics of perovskite solar cells , 2014, Nature Photonics.

[125]  Nana Wang,et al.  Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells , 2016, Nature Photonics.

[126]  R. Friend,et al.  Enhanced Performance in Fluorene-Free Organometal Halide Perovskite Light-Emitting Diodes using Tunable, Low Electron Affinity Oxide Electron Injectors , 2015, Advanced materials.

[127]  O. Voznyy,et al.  Electron–phonon interaction in efficient perovskite blue emitters , 2018, Nature Materials.

[128]  J. L. Balenzategui,et al.  Photon recycling and Shockley’s diode equation , 1997 .

[129]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[130]  Jinsong Huang,et al.  Ultrahigh sensitivity of methylammonium lead tribromide perovskite single crystals to environmental gases , 2016, Science Advances.

[131]  Wei Zhang,et al.  Optical properties and limiting photocurrent of thin-film perovskite solar cells , 2015 .

[132]  R. Friend,et al.  Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix , 2015, The journal of physical chemistry letters.

[133]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[134]  Richard H. Friend,et al.  Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO3 composite layer , 2016 .

[135]  Guangda Niu,et al.  All‐Inorganic Bismuth‐Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability , 2018 .

[136]  Sandeep Kumar Pathak,et al.  High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. , 2014, The journal of physical chemistry letters.

[137]  Rachel C. Kurchin,et al.  Methylammonium Bismuth Iodide as a Lead-Free, Stable Hybrid Organic-Inorganic Solar Absorber. , 2016, Chemistry.

[138]  Z. Vardeny,et al.  Electroabsorption Spectroscopy Studies of (C4H9NH3)2PbI4 Organic-Inorganic Hybrid Perovskite Multiple Quantum Wells. , 2017, The journal of physical chemistry letters.

[139]  R. Friend,et al.  Bright and efficient blue polymer light emitting diodes with reduced operating voltages processed entirely at low-temperature , 2015 .

[140]  Edward H. Sargent,et al.  Perovskite photonic sources , 2016, Nature Photonics.

[141]  Jay B. Patel,et al.  Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process , 2018, Nature Communications.

[142]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[143]  A. Dodabalapur,et al.  Microcavity effects in organic semiconductors , 1994 .

[144]  N. Koch,et al.  Reduced Interface‐Mediated Recombination for High Open‐Circuit Voltages in CH3NH3PbI3 Solar Cells , 2017, Advanced materials.

[145]  M. Grätzel,et al.  Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition , 2018, Nature Materials.

[146]  Dong Ding,et al.  Two-Dimensional Organic Tin Halide Perovskites with Tunable Visible Emission and Their Use in Light-Emitting Devices , 2017 .

[147]  A. Zunger,et al.  Instilling defect tolerance in new compounds. , 2017, Nature materials.

[148]  R. Friend,et al.  Tunable Near-Infrared Luminescence in Tin Halide Perovskite Devices. , 2016, The journal of physical chemistry letters.

[149]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[150]  Wei Zhang,et al.  Photo-induced halide redistribution in organic–inorganic perovskite films , 2016, Nature Communications.

[151]  M. Johnston,et al.  Optical Description of Mesostructured Organic-Inorganic Halide Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[152]  S. Stranks,et al.  The influence of the Rashba effect , 2018, Nature Materials.