Double nanohole optical trapping: dynamics and protein-antibody co-trapping.

A double nanohole in a metal film can optically trap nanoparticles such as polystyrene/silica spheres, encapsulated quantum dots and up-converting nanoparticles. Here we study the dynamics of trapped particles, showing a skewed distribution and low roll-off frequency that are indicative of Kramers-hopping at the nanoscale. Numerical simulations of trapped particles show a double-well potential normally found in Kramers-hopping systems, as well as providing quantitative agreement with the overall trapping potential. In addition, we demonstrate co-trapping of bovine serum albumin (BSA) with anti-BSA by sequential delivery in a microfluidic channel. This co-trapping opens up exciting possibilities for the study of protein interactions at the single particle level.

[1]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[2]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[3]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[4]  David Erickson,et al.  Controlled photonic manipulation of proteins and other nanomaterials. , 2012, Nano letters.

[5]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[6]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[7]  E. Stelzer,et al.  Photonic force microscope calibration by thermal noise analysis , 1998 .

[8]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[9]  David Erickson,et al.  Nanomanipulation using near field photonics. , 2011, Lab on a chip.

[10]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[11]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[12]  Shiwei Wu,et al.  Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals , 2009, Proceedings of the National Academy of Sciences.

[13]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[14]  Amr A E Saleh,et al.  Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. , 2012, Nano letters.

[15]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[16]  Jaeyoun Kim,et al.  Joining plasmonics with microfluidics: from convenience to inevitability. , 2012, Lab on a chip.

[17]  R. Gordon,et al.  Flow-dependent double-nanohole optical trapping of 20 nm polystyrene nanospheres , 2012, Scientific Reports.

[18]  K. Dholakia,et al.  Optical trapping for analytical biotechnology. , 2012, Current opinion in biotechnology.

[19]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[20]  S. Arnold,et al.  Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing. , 2009, Optics express.

[21]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[22]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[23]  A. Pattantyus-Abraham,et al.  Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities. , 2009, Nano letters.

[24]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[25]  Mark Dykman,et al.  Thermally activated transitions in a bistable three-dimensional optical trap , 1999, Nature.

[26]  Kishan Dholakia,et al.  Optical micromanipulation takes hold , 2006 .