An effective growth method to improve the homogeneity of relaxor ferroelectric single crystal Pb(In1/2Nb1/2)O3‐ Pb(Mg1/3Nb2/3)O3‐PbTiO3

Compositional segregation usually has negative effects on the growth of solid solution ferroelectric single crystals of Pb(In1/2Nb1/2)O3‐Pb(Mg1/3Nb2/3)O3‐PbTiO3 (abbr. PIN‐PMN‐PT or PIMNT). A modified Bridgman method was adopted in this work to control the segregation and improve the compositional homogeneity significantly. The characteristic of this work is to use multiround growths and gradient composition raw materials in order to keep the PbTiO3 concentration constant during the crystal growth. As an example, the two‐round growth of ternary PIN‐PMN‐PT single crystal is conducted in the same Pt crucible with gradient raw materials, where the first‐round boule was used as the seed crystal for the second‐round growth. Our results show that the as‐grown (Ф80 mm × 270 mm) PIN‐PMN‐PT crystals exhibit higher phase transition temperatures (Tc∼180 °C, Tr/t∼110 °C) and larger coercive field (Ec∼5–5.5 kV/cm), which are much better than the performances of Pb(Mg1/3Nb2/3)O3‐PbTiO3 crystals, and similar dielectric and piezoelectric performances (ε∼5000, tanδ∼1.25%, d33∼1500 pC/N, kt∼60%). And about 85 percent of the crystal boule grown by the two‐round growth technique could maintain its compositions around the morphotropic phase boundary.

[1]  Xiaofeng Wang,et al.  Electrical properties of high Curie temperature (1−x)Pb(In1/2Nb1/2)O3–xPbTiO3 single crystals grown by the solution Bridgman technique , 2005 .

[2]  I. Bhaumik,et al.  Compositional variation in 0.65 PbMg2/3Nb1/3O3 ‐0.35 PbTiO3 single crystals grown by high temperature solution growth technique , 2007 .

[3]  Hongbing Chen,et al.  Study on the inhomogeneity of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 single crystal along the growth direction , 2010 .

[4]  Kenji Uchino,et al.  Dielectric and Piezoelectric Properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 Single Crystals , 1982 .

[5]  Y. Ishibashi,et al.  Dielectric and Piezoelectric Properties of Lead Indium Niobate-Lead Titanate Single Crystal with High Curie Temperature Near Morphotropic Phase Boundary , 2002 .

[6]  C. Randall,et al.  Phase Diagram of the Perovskite System (1−x)BiScO3-xPbTiO3 , 2004 .

[7]  Weiqi Wang,et al.  Cylindrically shaped ultrasonic linear array fabricated using PIMNT/epoxy 1-3 piezoelectric composite , 2013 .

[8]  Xiu-yu Li,et al.  Growth and piezo-/ferroelectric properties of PIN-PMN-PT single crystals , 2012 .

[9]  Xiangyong Zhao,et al.  Large pyroelectric response in relaxor-based ferroelectric (1−x)Pb(Mg1∕3Nb2∕3)O3–xPbTiO3 single crystals , 2005 .

[10]  Danfeng Yang,et al.  Growth and electrical properties of large size Pb(In1∕2Nb1∕2)O3–Pb(Mg1∕3Nb2∕3)O3–PbTiO3 crystals prepared by the vertical Bridgman technique , 2007 .

[11]  Thomas R. Shrout,et al.  Dielectric behavior of single crystals near the (1−X) Pb(Mg1/3Nb2/3)O3-(x) PbTiO3 morphotropic phase boundary , 1990 .

[12]  Xiaofeng Wang,et al.  Growth and electrical properties of Pb(In0.5Nb0.5)O3–PbTiO3 crystals by the solution Bridgman method , 2005 .

[13]  R. Jayavel,et al.  Crystal growth of PZN‐PT single crystals and critical issues for higher piezoelectric coefficient , 2012 .

[14]  Wen‐hua Jiang,et al.  Complete set of material properties of single domain 0.24Pb(In(1∕2)Nb(1∕2))O(3)-0.49Pb(Mg(1∕3)Nb(2∕3))O(3)-0.27PbTiO(3) single crystal and the orientation effects. , 2011, Applied physics letters.

[15]  Yiping Guo,et al.  Electric-field-induced strain and piezoelectric properties of a high Curie temperature Pb(In1/2Nb1/2)O3–PbTiO3 single crystal , 2003 .

[16]  V. Fistul,et al.  Photoconductivity of a semiconductor with large-scale fluctuations of electrostatic potential: A case of an impurity recombination , 1976 .

[17]  S. Wada,et al.  Piezoelectric single crystal Pb[(Zn1/3Nb2/3)0.93Ti0.07] O3 (PZNT 93/7) for ultrasonic transducers , 2002 .

[18]  Hongbing Chen,et al.  Growth of the Relaxor Based Ferroelectric Single Crystals Pb(In1/2Nb1/2)O3- Pb(Mg1/3Nb2/3)O3-PbTiO3 by Vertical Bridgman Technique , 2010 .

[19]  C. Randall,et al.  Electromechanical Properties in Rhombohedral BiScO3-PbTiO3 Single Crystals as a Function of Temperature , 2003 .

[20]  Xiangyong Zhao,et al.  Parallel multilayer magnetoelectric composite based on (1−x)Pb(Mg1/3Nb2/3)−xPbTiO3 and Terfenol-D coupled with charge mode amplifier , 2012 .

[21]  Thomas R. Shrout,et al.  Characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric crystal with enhanced phase transition temperatures , 2008 .

[22]  James F. Carroll,et al.  Improved stability for piezoelectric crystals grown in the lead indium niobate–lead magnesium niobate–lead titanate system , 2007 .

[23]  S. Priya,et al.  Importance of structural irregularity on dielectric loss in (1−x)Pb(Mg1/3Nb2/3)O3−(x)PbTiO3 crystals , 2002 .

[24]  N. Yasuda,et al.  Crystal growth and electrical properties of lead indium niobate–lead titanate binary single crystal , 2001 .

[25]  Andrew G. Glen,et al.  APPL , 2001 .

[26]  R. Sahul,et al.  Complete set of elastic, dielectric, and piezoelectric constants of [011]C poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3:Mn single crystals. , 2013, Journal of applied physics.

[27]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[28]  Xiaofeng Wang,et al.  Peculiar temperature aging effects on the piezoelectric constant of Pb(Mg1∕3Nb2∕3)O3‐PbTiO3 single crystal near the morphotropic phase boundary , 2005 .

[29]  Weizhuo Zhong,et al.  Growth and piezoelectric properties of Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals by the modified Bridgman technique , 2001 .

[30]  Thomas R. Shrout,et al.  Electromechanical characterization of [Formula: see text] crystals as a function of crystallographic orientation and temperature. , 2009, Journal of applied physics.

[31]  Y. Yamashita,et al.  Dielectric and Piezoelectric Properties of Pb[(In1/2Nb1/2)0.24(Mg1/3Nb2/3)0.42Ti0.34]O3 Single Crystals , 2005 .