Evaluating fMRI preprocessing pipelines

This article reviews the evaluation and optimization of the preprocessing steps for blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). This technique indirectly measures changes in local neuronal firing rates by measuring associated changes in deoxy-hemoglobin concentrations in nearby blood vessels. Based on the existing literature, it is impossible to make conclusive statements about the optimal algorithm and software implementations for any single preprocessing step, let alone entire pipelines. The author believes that the present focus on the technological testing of preprocessing steps should be balanced by approaches that test the pipeline. This should include all interactions measured using metrics that are closely linked to research and diagnostic questions addressed at the end of the processing pipeline. The goal is to avoid single expedient or default pipelines by developing a framework capable of potentially testing thousands of possible pipeline implementations per dataset. To achieve this goal, researchers depend on recent developments in software tools for managing neuroimaging workflows.

[1]  Pierre Hellier,et al.  Coupling dense and landmark-based approaches for nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[2]  Richard A. Harshman,et al.  Noise Reduction in BOLD-Based fMRI Using Component Analysis , 2002, NeuroImage.

[3]  P. Bandettini,et al.  Synthetic images by subspace transforms. I. Principal components images and related filters. , 1994, Medical physics.

[4]  Ravi S. Menon Postacquisition suppression of large‐vessel BOLD signals in high‐resolution fMRI , 2002, Magnetic resonance in medicine.

[5]  M. Bianciardi,et al.  Evaluation of mixed effects in event-related fMRI studies: impact of first-level design and filtering , 2004, NeuroImage.

[6]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[7]  Pierre Hellier,et al.  Hierarchical estimation of a dense deformation field for 3-D robust registration , 2001, IEEE Transactions on Medical Imaging.

[8]  L. K. Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[9]  J. Hajnal,et al.  A Registration and Interpolation Procedure for Subvoxel Matching of Serially Acquired MR Images , 1995, Journal of computer assisted tomography.

[10]  R. Leahy,et al.  Magnetic Resonance Image Tissue Classification Using a Partial Volume Model , 2001, NeuroImage.

[11]  Jesper L. R. Andersson,et al.  How to Estimate Global Activity Independent of Changes in Local Activity , 1997, NeuroImage.

[12]  Gary F. Egan,et al.  Evaluating subject specific preprocessing choices in multisubject fMRI data sets using data-driven performance metrics , 2003, NeuroImage.

[13]  Alan C. Evans,et al.  Searching scale space for activation in PET images , 1996, Human brain mapping.

[14]  M. D’Esposito,et al.  The Inferential Impact of Global Signal Covariates in Functional Neuroimaging Analyses , 1998, NeuroImage.

[15]  D. V. van Essen,et al.  Surface-based approaches to spatial localization and registration in primate cerebral cortex. , 2004, NeuroImage.

[16]  Joseph A. Helpern,et al.  A quantitative comparison of motion detection algorithms in fMRI , 2001 .

[17]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[18]  S C Strother,et al.  Comparison of voxel- and volume-of-interest-based analyses in FDG PET scans of HIV positive and healthy individuals. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  William F. Eddyy,et al.  Improved image registration by using fourier interpolation , 1996, Magnetic resonance in medicine.

[20]  Fred Tam,et al.  Retrospective coregistration of functional magnetic resonance imaging data using external monitoring , 2005, Magnetic resonance in medicine.

[21]  T. Lehmann,et al.  Addendum: B-spline interpolation in medical image processing , 2001, IEEE Transactions on Medical Imaging.

[22]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[23]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[24]  D. Louis Collins,et al.  Retrospective evaluation of intersubject brain registration , 2003, IEEE Transactions on Medical Imaging.

[25]  J. Duyn,et al.  Investigation of Low Frequency Drift in fMRI Signal , 1999, NeuroImage.

[26]  Mark Jenkinson,et al.  A Gradient-Informed Robust Motion Correction Method for FMRI , 2003, WBIR.

[27]  T Schormann,et al.  Three‐Dimensional linear and nonlinear transformations: An integration of light microscopical and MRI data , 1998, Human brain mapping.

[28]  P Kochunov,et al.  Evaluation of octree regional spatial normalization method for regional anatomical matching , 2000, Human brain mapping.

[29]  N C Andreasen,et al.  Functional MRI statistical software packages: A comparative analysis , 1998, Human brain mapping.

[30]  H. Jeremy Bockholt,et al.  Subcortical, cerebellar, and magnetic resonance based consistent brain image registration , 2003, NeuroImage.

[31]  Daniel B. Rowe,et al.  Parameter estimation in the magnitude-only and complex-valued fMRI data models , 2005, NeuroImage.

[32]  Mark A Elliott,et al.  The effects of geometric distortion correction on motion realignment in fMRI. , 2004, Academic radiology.

[33]  S. Strother,et al.  Reproducibility of BOLD‐based functional MRI obtained at 4 T , 1999, Human brain mapping.

[34]  David A. Rottenberg,et al.  Putting our heads together: a consensus approach to brain/non-brain segmentation in T1-weighted MR volumes , 2004, NeuroImage.

[35]  Roger P. Woods,et al.  Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation , 2003, NeuroImage.

[36]  Lars Kai Hansen,et al.  Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis , 2004, NeuroImage.

[37]  Arthur W. Toga,et al.  A meta-algorithm for brain extraction in MRI , 2004, NeuroImage.

[38]  Karl J. Friston,et al.  Modelling Geometric Deformations in Epi Time Series , 2022 .

[39]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[40]  John C. Gore,et al.  ROC Analysis of Statistical Methods Used in Functional MRI: Individual Subjects , 1999, NeuroImage.

[41]  Jeih-San Liow,et al.  Qualitative and Quantitative Evaluation of Six Algorithms for Correcting Intensity Nonuniformity Effects , 2001, NeuroImage.

[42]  Stephen C. Strother A developer’s commentary on fiswidgets , 2003, Neuroinformatics.

[43]  J C Mazziotta,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[44]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[45]  C R Meyer,et al.  Motion correction in fMRI via registration of individual slices into an anatomical volume , 1999, Magnetic resonance in medicine.

[46]  Thomas E. Nichols,et al.  Diagnosis and exploration of massively univariate neuroimaging models , 2003, NeuroImage.

[47]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[48]  M. Lowe,et al.  Spatially filtering functional magnetic resonance imaging data , 1997, Magnetic resonance in medicine.

[49]  Emma B. Lewis,et al.  Correction of differential intensity inhomogeneity in longitudinal MR images , 2004, NeuroImage.

[50]  G H Glover,et al.  Image‐based method for retrospective correction of physiological motion effects in fMRI: RETROICOR , 2000, Magnetic resonance in medicine.

[51]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[52]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[53]  S Makeig,et al.  Spatially independent activity patterns in functional MRI data during the stroop color-naming task. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  A. M. Dale,et al.  A hybrid approach to the skull stripping problem in MRI , 2004, NeuroImage.

[55]  Gerald Q. Maguire,et al.  Comparison and evaluation of retrospective intermodality brain image registration techniques. , 1997, Journal of computer assisted tomography.

[56]  G. Jackson,et al.  Changes in effective connectivity models in the presence of task‐correlated motion: An fMRI study , 2004, Human brain mapping.

[57]  V L Morgan,et al.  Comparison of functional MRI image realignment tools using a computer‐generated phantom , 2001, Magnetic resonance in medicine.

[58]  G. Glover,et al.  Neuroimaging at 1.5 T and 3.0 T: Comparison of oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[59]  R W Cox,et al.  Real‐time 3D image registration for functional MRI , 1999, Magnetic resonance in medicine.

[60]  Linda Chang,et al.  k-Space based summary motion detection for functional magnetic resonance imaging , 2003, NeuroImage.

[61]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[62]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[63]  Karl J. Friston,et al.  To Smooth or Not to Smooth? Bias and Efficiency in fMRI Time-Series Analysis , 2000, NeuroImage.

[64]  K. Uğurbil,et al.  Experimental determination of the BOLD field strength dependence in vessels and tissue , 1997, Magnetic resonance in medicine.

[65]  Bostjan Likar,et al.  MRI intensity inhomogeneity correction by combining intensity and spatial information , 2004, Physics in medicine and biology.

[66]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[67]  H. Ward,et al.  Spherical navigator echoes for full 3D rigid body motion measurement in MRI , 2002 .

[68]  J. Ashburner,et al.  Multimodal Image Coregistration and Partitioning—A Unified Framework , 1997, NeuroImage.

[69]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[70]  Gary E. Christensen,et al.  Consistent landmark and intensity-based image registration , 2002, IEEE Transactions on Medical Imaging.

[71]  Walter Schneider,et al.  Fiswidgets - A graphical computing environment for neuroimaging analysis , 2003, Neuroinformatics.

[72]  E. Bullmore,et al.  Methods for diagnosis and treatment of stimulus‐correlated motion in generic brain activation studies using fMRI , 1999, Human brain mapping.

[73]  Michael Weiner,et al.  Accurate template-based correction of brain MRI intensity distortion with application to dementia and aging , 2004, IEEE Transactions on Medical Imaging.

[74]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[75]  Lars Kai Hansen,et al.  Enhancing the Multivariate Signal of [15O] water PET Studies with a New Non-Linear Neuroanatomical Registration Algorithm , 1999, IEEE Trans. Medical Imaging.

[76]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[77]  K. Kiehl,et al.  Removal of Confounding Effects of Global Signal in Functional MRI Analyses , 2001, NeuroImage.

[78]  E. DeYoe,et al.  Reduction of physiological fluctuations in fMRI using digital filters , 1996, Magnetic resonance in medicine.

[79]  B. Ripley,et al.  A new statistical approach to detecting significant activation in functional MRI , 2000, NeuroImage.

[80]  Daniel B. Rowe Modeling both the magnitude and phase of complex-valued fMRI data , 2005, NeuroImage.

[81]  P. Mitra,et al.  The nature of spatiotemporal changes in cerebral hemodynamics as manifested in functional magnetic resonance imaging , 1997, Magnetic resonance in medicine.

[82]  S. C. Strother,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: Mutual Information Learning Curves , 2002, NeuroImage.

[83]  V D Calhoun,et al.  Independent component analysis of fMRI data in the complex domain , 2002, Magnetic resonance in medicine.

[84]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[85]  Guillermo Sapiro,et al.  Anisotropic 2-D and 3-D averaging of fMRI signals , 2001, IEEE Transactions on Medical Imaging.

[86]  Emery N. Brown,et al.  Spatiotemporal wavelet analysis for functional MRI , 2004, NeuroImage.

[87]  X Hu,et al.  Retrospective estimation and correction of physiological fluctuation in functional MRI , 1995, Magnetic resonance in medicine.

[88]  Paul M. Thompson,et al.  Brain structural mapping using a novel hybrid implicit/explicit framework based on the level-set method , 2005, NeuroImage.

[89]  S C Strother,et al.  Comparison of matched BOLD and FAIR 4.0T-fMRI with [15O]water PET brain volumes. , 1999, Medical physics.

[90]  Arthur W Toga,et al.  The LONI Pipeline Processing Environment , 2003, NeuroImage.

[91]  I. Johnsrude,et al.  The problem of functional localization in the human brain , 2002, Nature Reviews Neuroscience.

[92]  Gary F. Egan,et al.  Simulation of the Effects of Global Normalization Procedures in Functional MRI , 2002, NeuroImage.

[93]  K H Chuang,et al.  IMPACT: Image‐based physiological artifacts estimation and correction technique for functional MRI , 2001, Magnetic resonance in medicine.

[94]  Paul M. Thompson,et al.  Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage , 2002, IEEE Transactions on Information Technology in Biomedicine.

[95]  K Mathiak,et al.  Evaluation of motion and realignment for functional magnetic resonance imaging in real time , 2001, Magnetic resonance in medicine.

[96]  Karl J. Friston,et al.  Assessing the significance of focal activations using their spatial extent , 1994, Human brain mapping.

[97]  Stephen C. Strother,et al.  Impact of inter-subject image registration on group analysis of fMRI data , 2004 .

[98]  David A. Rottenberg,et al.  Quantitative comparison of four brain extraction algorithms , 2004, NeuroImage.

[99]  Natasa Kovacevic,et al.  Deformation Based Representation of Groupwise Average and Variability , 2004, MICCAI.

[100]  J C Mazziotta,et al.  Creation and use of a Talairach‐compatible atlas for accurate, automated, nonlinear intersubject registration, and analysis of functional imaging data , 1999, Human brain mapping.

[101]  J R Moeller,et al.  A Regional Covariance Approach to the Analysis of Functional Patterns in Positron Emission Tomographic Data , 1991, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[102]  Bruce R. Rosen,et al.  Motion detection and correction in functional MR imaging , 1995 .

[103]  Alan C. Evans,et al.  A nonparametric method for automatic correction of intensity nonuniformity in MRI data , 1998, IEEE Transactions on Medical Imaging.

[104]  Robert Turner,et al.  Image Distortion Correction in fMRI: A Quantitative Evaluation , 2002, NeuroImage.

[105]  G. Glover,et al.  Correction of physiologically induced global off‐resonance effects in dynamic echo‐planar and spiral functional imaging , 2002, Magnetic resonance in medicine.

[106]  Rajesh Nandy,et al.  Improving the spatial specificity of canonical correlation analysis in fMRI , 2004, Magnetic resonance in medicine.

[107]  E. Seto,et al.  Quantifying Head Motion Associated with Motor Tasks Used in fMRI , 2001, NeuroImage.

[108]  J. Mazziotta,et al.  Regional Spatial Normalization: Toward an Optimal Target , 2001, Journal of computer assisted tomography.

[110]  Heinz-Otto Peitgen,et al.  The Skull Stripping Problem in MRI Solved by a Single 3D Watershed Transform , 2000, MICCAI.

[111]  Martin J McKeown,et al.  A post-processing/region of interest (ROI) method for discriminating patterns of activity in statistical maps of fMRI data , 2004, Journal of Neuroscience Methods.

[112]  Jean-Francois Mangin,et al.  Reducing Activation-Related Bias in FMRI Registration , 2004, MIAR.

[113]  E. Bullmore,et al.  Wavelets and functional magnetic resonance imaging of the human brain , 2004, NeuroImage.

[114]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[115]  Todd B. Parrish,et al.  Impact of signal‐to‐noise on functional MRI , 2000 .

[116]  P. Roland,et al.  Comparison of spatial normalization procedures and their impact on functional maps , 2002, Human brain mapping.

[117]  Michael S. Gazzaniga,et al.  Databasing fMRI studies — towards a 'discovery science' of brain function , 2002, Nature Reviews Neuroscience.

[118]  Natasa Kovacevic,et al.  A Robust Method for Extraction and Automatic Segmentation of Brain Images , 2002, NeuroImage.

[119]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[120]  J B Poline,et al.  Enhanced Detection in Brain Activation Maps Using a Multifiltering Approach , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[121]  Karl J. Friston,et al.  Movement‐Related effects in fMRI time‐series , 1996, Magnetic resonance in medicine.

[122]  R. Turner,et al.  Characterization and Correction of Interpolation Effects in the Realignment of fMRI Time Series , 2000, NeuroImage.

[123]  Jean-Francois Mangin,et al.  What is the best similarity measure for motion correction in fMRI time series? , 2002, IEEE Transactions on Medical Imaging.

[124]  Matthew Brett,et al.  An Evaluation of the Use of Magnetic Field Maps to Undistort Echo-Planar Images , 2003, NeuroImage.

[125]  W. Eric L. Grimson,et al.  Exploratory Identification of Cardiac Noise in fMRI Images , 2003, MICCAI.

[126]  Paul M. Matthews,et al.  Functional magnetic resonance imaging: An introduction to methods , 2001 .

[127]  L. Freire,et al.  Motion Correction Algorithms May Create Spurious Brain Activations in the Absence of Subject Motion , 2001, NeuroImage.

[128]  Michael Brady,et al.  TIGER - A New Model for Spatio-temporal Realignment of FMRI Data , 2004, ECCV Workshops CVAMIA and MMBIA.

[129]  Jody Tanabe,et al.  See Blockindiscussions, Blockinstats, Blockinand Blockinauthor Blockinprofiles Blockinfor Blockinthis Blockinpublication Comparison Blockinof Blockindetrending Blockinmethods Blockinfor Optimal Blockinfmri Blockinpreprocessing , 2022 .

[130]  S. Strother,et al.  Quantitative Comparisons of Image Registration Techniques Based on High‐Resolution MRI of the Brain , 1994, Journal of computer assisted tomography.

[131]  G. Glover,et al.  Physiological noise in oxygenation‐sensitive magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[132]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[133]  Essa Yacoub,et al.  The Evaluation of Preprocessing Choices in Single-Subject BOLD fMRI Using NPAIRS Performance Metrics , 2003, NeuroImage.

[134]  Irene Tracey,et al.  Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal , 2004, NeuroImage.

[135]  Jeffrey A. Fessler,et al.  Fast, iterative image reconstruction for MRI in the presence of field inhomogeneities , 2003, IEEE Transactions on Medical Imaging.

[136]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[137]  Thomas Martin Deserno,et al.  Survey: interpolation methods in medical image processing , 1999, IEEE Transactions on Medical Imaging.

[138]  X Hu,et al.  Retrospective estimation and correction of physiological artifacts in fMRI by direct extraction of physiological activity from MR data , 1996, Magnetic resonance in medicine.

[139]  Jos B. T. M. Roerdink,et al.  Denoising functional MR images: a comparison of wavelet denoising and Gaussian smoothing , 2004, IEEE Transactions on Medical Imaging.

[140]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.