Stimulation of rat parietal cell function by histamine and GLP-1-(7-36) amide is mediated by Gs alpha.

It was the aim of the present study to determine in rat parietal cells whether Gs alpha, the stimulatory subunit of adenylate cyclase, mediates adenosine 3',5'-cyclic monophosphate (cAMP)-dependent parietal cell function in response to histamine and glucagon-like peptide 1 (GLP-1)-(7-36) amide. Cytoplasmic membrane from enriched (83 +/- 5%) rat parietal cells were incubated for 30 min with 30 microCi/ml [32P]NAD+ and 40 micrograms/ml preactivated cholera toxin (CT), a pharmacological tool for activation of Gs alpha. Subsequent sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography revealed [32P]ADP ribosylation of Gs alpha represented by three proteins with molecular masses ranging from 42 to 45 kDa. In intact parietal cells, CT (10(-12)-10(-8) M) caused marked stimulation of [14C]aminopyrine accumulation and cAMP production confirming the functional importance of Gs alpha in regulation of H+ production. Identical membrane preparations were preincubated (2 h, 4 degrees C) in parallel with and without RM/1, a rabbit polyclonal anti-Gs alpha-antibody. Subsequently, adenylate cyclase was stimulated by histamine, GLP-1-(7-36) amide, CT, or forskolin. At a 1:10 dilution, the antiserum completely abolished adenylate cyclase activity in response to maximal concentrations of histamine, GLP-1-(7-36) amide, and CT while reducing forskolin stimulation by only 22.0 +/- 4.9%. At 1:50, RM/1 reduced responses to histamine, GLP-1-(7-36) amide and CT by 20-30% but failed to inhibit forskolin-stimulated enzyme activity. At 1:100, the antiserum was ineffective versus all stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)