Simulation and optimization of a piezoelectric micropump for medical applications

We designed a valveless micropump excited by a piezoelectric actuator for medical applications. The complete electric–fluid–solid coupling model is built upon using ANSYS software (Canonsburg, PA) to investigate the behaviors of the micropump. The effects of the geometrical dimensions on the micropump characteristics and its efficiency are analyzed. The simulation results show that there is an optimal thickness of the piezoelectric layer to obtain a large pump flow, and that this optimal thickness is affected by the material and the thickness of the pump membrane. To enhance the performance of the micropump, some important diffuser parameters, such as the diffuser length, the diffuser angle, and the neck width, should be optimized. However, the variations of the diffuser’s geometrical dimensions do not affect the optimal thickness of the piezoelectric layer.

[1]  T. Y. Ng,et al.  Analytical solutions for the dynamic analysis of a valveless micropump — a fluid–membrane coupling study , 2001 .

[2]  G. Stemme,et al.  A valveless diffuser/nozzle-based fluid pump , 1993 .

[3]  Peter Enoksson,et al.  A Valve-Less Diffuser Micropump for Microfluidic Analytical Systems , 2001 .

[4]  Gangbing Song,et al.  Simulation of a piezoelectrically actuated valveless micropump , 2005 .

[5]  Shaochen Chen,et al.  Analytical analysis of a circular PZT actuator for valveless micropumps , 2003 .

[6]  X. Zha,et al.  Study on a piezoelectric micropump for the controlled drug delivery system , 2007 .

[7]  Suresh V. Garimella,et al.  Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps , 2004 .

[8]  Dennis L. Polla,et al.  Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology , 2001 .

[9]  Chiming Wei,et al.  Modeling and characterization of a nanoliter drug-delivery MEMS micropump with circular bossed membrane. , 2005, Nanomedicine : nanotechnology, biology, and medicine.

[10]  O. Jeong,et al.  Fabrication and test of a thermopneumatic micropump with a corrugated p+ diaphragm , 2000 .

[11]  G. Stemme,et al.  Micromachined flat-walled valveless diffuser pumps , 1997 .

[12]  Yong-Sang Kim,et al.  A dispoasble polydimethylsiloxane-based diffuser micropump actuated by piezoelectric-disc , 2004 .

[13]  Y. H. Mu,et al.  Optimisation Design of a Piezoelectric Micropump , 1999 .

[14]  Mir Majid Teymoori,et al.  Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications , 2005 .

[15]  M. Richter,et al.  A bidirectional silicon micropump , 1995 .

[16]  P. Yager,et al.  A ferrofluidic magnetic micropump , 2001 .