Plasmonic excitation-assisted optical and electric enhancement in ultra-thin solar cells: the influence of nano-strip cross section

The effects of Ag nano-strips with triangle, rectangular and trapezoid cross sections on the optical absorption, generation rate, and short-circuit current density of ultra-thin solar cells were investigated. By putting the nano-strips as a grating structure on the top of the solar cells, the waveguide, surface plasmon polariton (SPP), and localized surface plasmon (LSP) modes, which are excited with the assistance of nano-strips, were evaluated in TE and TM polarizations. The results show, firstly, the TM modes are more influential than TE modes in optical and electrical properties enhancement of solar cell, because of plasmonic excitations in TM mode. Secondly, the trapezoid nano-strips reveal noticeable impact on the optical absorption, generation rate, and short-circuit current density enhancement than triangle and rectangular ones. In particular, the absorption of long wavelengths which is a challenge in ultra-thin solar cells is significantly improved by using Ag trapezoid nano-strips.

[1]  Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance. , 2014, Optics express.

[2]  P. Denk,et al.  Highly Absorbing Solar Cells—a Survey of Plasmonic Nanostructures , 2022 .

[3]  Edward S. Barnard,et al.  Design of Plasmonic Thin‐Film Solar Cells with Broadband Absorption Enhancements , 2009 .

[4]  D. Redfield,et al.  Multiple‐pass thin‐film silicon solar cell , 1974 .

[5]  Xiaoping Zhou,et al.  OPTICAL PROPERTIES AND PLASMON RESONANCE OF COUPLED GOLD NANOSHELL ARRAYS , 2011 .

[6]  W. Chew,et al.  Angular response of thin-film organic solar cells with periodic metal back nanostrips. , 2011, Optics letters.

[7]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[8]  Paul W. Leu,et al.  Designing metal hemispheres on silicon ultrathin film solar cells for plasmonic light trapping. , 2014, Optics letters.

[9]  Albert Polman,et al.  Design principles for particle plasmon enhanced solar cells , 2008 .

[10]  Sailing He,et al.  Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres , 2011 .

[11]  Martin A. Green,et al.  The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions , 2011 .

[12]  Joshua M. Pearce,et al.  Multi-resonant silver nano-disk patterned thin film hydrogenated amorphous silicon solar cells for Staebler-Wronski effect compensation , 2014, Journal of Applied Physics.

[13]  E. Schiff Thermodynamic limit to photonic-plasmonic light-trapping in thin films on metals , 2011 .

[14]  Gang Li,et al.  Surface Plasmon and Scattering‐Enhanced Low‐Bandgap Polymer Solar Cell by a Metal Grating Back Electrode , 2012 .

[15]  Influence of rear located silver nanoparticle induced light losses on the light trapping of silicon wafer-based solar cells , 2014 .

[16]  Wei Ding,et al.  Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. , 2013, Optics express.

[17]  Miro Zeman,et al.  Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption , 2013 .

[18]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[19]  W. Ye,et al.  Plasmonic metal nanocubes for broadband light absorption enhancement in thin-film a-Si solar cells , 2014 .

[20]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[21]  J M Saiz,et al.  Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles. , 2008, Optics express.

[22]  Liping Wang,et al.  Plasmonic light trapping in an ultrathin photovoltaic layer with film-coupled metamaterial structures , 2014, 1409.3561.

[23]  Long Wen,et al.  Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells , 2014 .

[24]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[25]  R. Norwood,et al.  Ultrathin organic bulk heterojunction solar cells: Plasmon enhanced performance using Au nanoparticles , 2012 .

[26]  Vikram L. Dalal,et al.  Photonic crystal based back reflectors for light management and enhanced absorption in amorphous silicon solar cells , 2009 .

[27]  Naomi J. Halas,et al.  Optimized plasmonic nanoparticle distributions for solar spectrum harvesting , 2006 .

[28]  Renhao Fan,et al.  Broadband antireflection and light-trapping enhancement of plasmonic solar cells , 2013 .

[29]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[30]  M. Topič,et al.  Solution processed silver nanoparticles in dye-sensitized solar cells , 2014 .

[31]  H. Stiebig,et al.  Influence of back contact morphology on light trapping and plasmonic effects in microcrystalline silicon single junction and micromorph tandem solar cells , 2013 .

[32]  George C Schatz,et al.  Toward plasmonic solar cells: protection of silver nanoparticles via atomic layer deposition of TiO2. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[33]  Rana Biswas,et al.  Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit. , 2011, Optics express.

[34]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[35]  M. Meier,et al.  Plasmonic reflection grating back contacts for microcrystalline silicon solar cells , 2011 .

[36]  Saulius Juodkazis,et al.  Surface plasmon resonances in periodic and random patterns of gold nano-disks for broadband light harvesting. , 2012, Optics express.

[37]  Harry A Atwater,et al.  Design Considerations for Plasmonic Photovoltaics , 2010, Advanced materials.

[38]  M. Zeman,et al.  Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells. , 2014, Optics express.

[39]  Charles A. Schmuttenmaer,et al.  Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core− Shell−Shell Nanostructures , 2013 .

[40]  H. Lin,et al.  Plasmonic ITO-free polymer solar cell. , 2014, Optics express.

[41]  Hung-chun Chang,et al.  Design of anti-ring back reflectors for thin-film solar cells based on three-dimensional optical and electrical modeling , 2014 .

[42]  Yi Cui,et al.  Solution-processed metal nanowire mesh transparent electrodes. , 2008, Nano letters.

[43]  Carsten Rockstuhl,et al.  Absorption enhancement in solar cells by localized plasmon polaritons , 2008 .

[44]  Elvira Fortunato,et al.  Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors. , 2014, Optics express.

[45]  Harry A Atwater,et al.  Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. , 2011, Nano letters.

[46]  Hilmi Volkan Demir,et al.  Volumetric plasmonic resonator architecture for thin-film solar cells , 2011 .

[47]  Peter Bienstman,et al.  Plasmonic absorption enhancement in organic solar cells with thin active layers , 2009 .

[48]  Jung-Yong Lee,et al.  Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. , 2014, ACS nano.

[49]  Yoon-Chae Nah,et al.  Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles , 2008 .

[50]  D. Jeong,et al.  Plasmonic absorption enhancement in organic solar cells by nano disks in a buffer layer , 2012 .

[51]  M. Green,et al.  Plasmonics for photovoltaic applications , 2010 .

[52]  E. Yablonovitch Statistical ray optics , 1982 .

[53]  A. Jen,et al.  Performance limits of plasmon-enhanced organic photovoltaics , 2014 .