Automatic Subspace Learning via Principal Coefficients Embedding

In this paper, we address two challenging problems in unsupervised subspace learning: 1) how to automatically identify the feature dimension of the learned subspace (i.e., automatic subspace learning) and 2) how to learn the underlying subspace in the presence of Gaussian noise (i.e., robust subspace learning). We show that these two problems can be simultaneously solved by proposing a new method [(called principal coefficients embedding (PCE)]. For a given data set <inline-formula> <tex-math notation="LaTeX">$\mathbf {D}\boldsymbol {\in } \mathbb{R}^{\boldsymbol {m\times n}}$ </tex-math></inline-formula>, PCE recovers a clean data set <inline-formula> <tex-math notation="LaTeX">$\mathbf {D}_{0}\boldsymbol {\in } \mathbb{R}^{\boldsymbol {m\times n}}$ </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">$\mathbf {D}$ </tex-math></inline-formula> and simultaneously learns a global reconstruction relation <inline-formula> <tex-math notation="LaTeX">$\mathbf {C}\boldsymbol {\in } \mathbf {R}^{\boldsymbol {n\times n}}$ </tex-math></inline-formula> of <inline-formula> <tex-math notation="LaTeX">$\mathbf {D}_{\boldsymbol {0}}$ </tex-math></inline-formula>. By preserving <inline-formula> <tex-math notation="LaTeX">$\mathbf {C}$ </tex-math></inline-formula> into an <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {m^{\prime }}$ </tex-math></inline-formula>-dimensional space, the proposed method obtains a projection matrix that can capture the latent manifold structure of <inline-formula> <tex-math notation="LaTeX">$\mathbf {D}_{\boldsymbol {0}}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$\boldsymbol {m^{\prime }\ll m}$ </tex-math></inline-formula> is automatically determined by the rank of <inline-formula> <tex-math notation="LaTeX">$\mathbf {C}$ </tex-math></inline-formula> with theoretical guarantees. PCE has three advantages: 1) it can automatically determine the feature dimension even though data are sampled from a union of multiple linear subspaces in presence of the Gaussian noise; 2) although the objective function of PCE only considers the Gaussian noise, experimental results show that it is robust to the non-Gaussian noise (e.g., random pixel corruption) and real disguises; and 3) our method has a closed-form solution and can be calculated very fast. Extensive experimental results show the superiority of PCE on a range of databases with respect to the classification accuracy, robustness, and efficiency.

[1]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[2]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[3]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[4]  Aleix M. Martinez,et al.  The AR face database , 1998 .

[5]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[6]  M. R. Osborne,et al.  A new approach to variable selection in least squares problems , 2000 .

[7]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Pietro Perona,et al.  Grouping and dimensionality reduction by locally linear embedding , 2001, NIPS.

[9]  A. Vinciarelli,et al.  Estimating the Intrinsic Dimension of Data with a Fractal-Based Method , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Balázs Kégl,et al.  Intrinsic Dimension Estimation Using Packing Numbers , 2002, NIPS.

[11]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[12]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[13]  Geoffrey E. Hinton,et al.  Neighbourhood Components Analysis , 2004, NIPS.

[14]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[15]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[16]  Hwann-Tzong Chen,et al.  Local discriminant embedding and its variants , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[19]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[20]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[22]  Shuicheng Yan,et al.  A Parameter-Free Framework for General Supervised Subspace Learning , 2007, IEEE Transactions on Information Forensics and Security.

[23]  Chih-Jen Lin,et al.  LIBLINEAR: A Library for Large Linear Classification , 2008, J. Mach. Learn. Res..

[24]  Takeo Kanade,et al.  Multi-PIE , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[25]  Shuicheng Yan,et al.  Semi-supervised Learning by Sparse Representation , 2009, SDM.

[26]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[27]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[29]  Allen Y. Yang,et al.  Fast ℓ1-minimization algorithms and an application in robust face recognition: A review , 2010, 2010 IEEE International Conference on Image Processing.

[30]  Gérard G. Medioni,et al.  Dimensionality Estimation, Manifold Learning and Function Approximation using Tensor Voting , 2010, J. Mach. Learn. Res..

[31]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Xiaoyang Tan,et al.  Pattern Recognition , 2016, Communications in Computer and Information Science.

[33]  Shuicheng Yan,et al.  Learning With $\ell ^{1}$-Graph for Image Analysis , 2010, IEEE Transactions on Image Processing.

[34]  Alfred O. Hero,et al.  On Local Intrinsic Dimension Estimation and Its Applications , 2010, IEEE Transactions on Signal Processing.

[35]  Alessandro Rozza,et al.  Minimum Neighbor Distance Estimators of Intrinsic Dimension , 2011, ECML/PKDD.

[36]  Lei Zhang,et al.  Sparse representation or collaborative representation: Which helps face recognition? , 2011, 2011 International Conference on Computer Vision.

[37]  Ran He,et al.  Maximum Correntropy Criterion for Robust Face Recognition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Zhigang Luo,et al.  Manifold Regularized Discriminative Nonnegative Matrix Factorization With Fast Gradient Descent , 2011, IEEE Transactions on Image Processing.

[39]  Ran He,et al.  Robust Principal Component Analysis Based on Maximum Correntropy Criterion , 2011, IEEE Transactions on Image Processing.

[40]  René Vidal,et al.  A closed form solution to robust subspace estimation and clustering , 2011, CVPR 2011.

[41]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[42]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[43]  Zhigang Luo,et al.  NeNMF: An Optimal Gradient Method for Nonnegative Matrix Factorization , 2012, IEEE Transactions on Signal Processing.

[44]  Stefanos Zafeiriou,et al.  Subspace Learning from Image Gradient Orientations , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Jiwen Lu,et al.  Neighborhood repulsed metric learning for kinship verification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[46]  Samuel H. Huang,et al.  Fractal-Based Intrinsic Dimension Estimation and Its Application in Dimensionality Reduction , 2012, IEEE Transactions on Knowledge and Data Engineering.

[47]  Shuicheng Yan,et al.  Pairwise Sparsity Preserving Embedding for Unsupervised Subspace Learning and Classification , 2013, IEEE Transactions on Image Processing.

[48]  Xuelong Li,et al.  Rank Preserving Sparse Learning for Kinect Based Scene Classification , 2013, IEEE Transactions on Cybernetics.

[49]  René Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications , 2012, IEEE transactions on pattern analysis and machine intelligence.

[50]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Changsheng Xu,et al.  General Subspace Learning With Corrupted Training Data Via Graph Embedding , 2013, IEEE Transactions on Image Processing.

[52]  D. Tao,et al.  On the robustness and generalization of Cauchy regression , 2014, 2014 4th IEEE International Conference on Information Science and Technology.

[53]  Dacheng Tao,et al.  Large-Margin Multi-ViewInformation Bottleneck , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Dacheng Tao,et al.  Large-margin Weakly Supervised Dimensionality Reduction , 2014, ICML.

[55]  Lei Zhang,et al.  Robust Principal Component Analysis with Complex Noise , 2014, ICML.

[56]  Narendra Ahuja,et al.  Robust Orthonormal Subspace Learning: Efficient Recovery of Corrupted Low-Rank Matrices , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Alessandro Rozza,et al.  DANCo: An intrinsic dimensionality estimator exploiting angle and norm concentration , 2014, Pattern Recognit..

[58]  Xuelong Li,et al.  Joint Embedding Learning and Sparse Regression: A Framework for Unsupervised Feature Selection , 2014, IEEE Transactions on Cybernetics.

[59]  Ling Shao,et al.  Unsupervised Spectral Dual Assignment Clustering of Human Actions in Context , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[60]  Dong Xu,et al.  Weighted Block-Sparse Low Rank Representation for Face Clustering in Videos , 2014, ECCV.

[61]  Zhang Yi,et al.  fLRR: fast low-rank representation using Frobenius-norm , 2014 .

[62]  René Vidal,et al.  Low rank subspace clustering (LRSC) , 2014, Pattern Recognit. Lett..

[63]  Feiping Nie,et al.  Optimal Mean Robust Principal Component Analysis , 2014, ICML.

[64]  Shenghua Gao,et al.  Neither Global Nor Local: Regularized Patch-Based Representation for Single Sample Per Person Face Recognition , 2014, International Journal of Computer Vision.

[65]  Xuesong Lu,et al.  Fisher Discriminant Analysis With L1-Norm , 2014, IEEE Transactions on Cybernetics.

[66]  Xuelong Li,et al.  Large-Scale Unsupervised Hashing with Shared Structure Learning , 2015, IEEE Transactions on Cybernetics.

[67]  Zhang Yi,et al.  Robust Subspace Clustering via Thresholding Ridge Regression , 2015, AAAI.

[68]  Gang Wang,et al.  Reconstruction-Based Metric Learning for Unconstrained Face Verification , 2015, IEEE Transactions on Information Forensics and Security.

[69]  Dacheng Tao,et al.  Multi-View Intact Space Learning , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  B. V. K. Vijaya Kumar,et al.  Generalized Transitive Distance with Minimum Spanning Random Forest , 2015, IJCAI.

[71]  Bin Luo,et al.  Similarity Learning of Manifold Data , 2015, IEEE Transactions on Cybernetics.

[72]  Dacheng Tao,et al.  Classification with Noisy Labels by Importance Reweighting , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[73]  Dacheng Tao,et al.  On the Performance of Manhattan Nonnegative Matrix Factorization , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[74]  Qingshan Liu,et al.  $L_{1}$ -Minimization Algorithms for Sparse Signal Reconstruction Based on a Projection Neural Network , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[75]  Yuan Yuan,et al.  Congested scene classification via efficient unsupervised feature learning and density estimation , 2016, Pattern Recognit..

[76]  Ling Shao,et al.  A Local Structural Descriptor for Image Matching via Normalized Graph Laplacian Embedding , 2016, IEEE Transactions on Cybernetics.

[77]  Zhang Yi,et al.  Constructing the L2-Graph for Robust Subspace Learning and Subspace Clustering , 2012, IEEE Transactions on Cybernetics.

[78]  Zhang Yi,et al.  Connections Between Nuclear-Norm and Frobenius-Norm-Based Representations , 2015, IEEE Transactions on Neural Networks and Learning Systems.