Viscosity and Conductivity Tunable Diode-like Behavior for Meso- and Micropores.

Rectifying pores, which transport ions mainly in one direction blocking the ionic flow in the other, were shown to be important in the preparation of chemical sensors, components of ionic circuits, and mimics of biological channels. Ionic rectification has been shown with various engineered systems, but pores with similar opening diameters often rectify to a various uncontrolled extent. In this Letter we present a system of single meso-pores, whose current-voltage curves and rectification can be tuned with great precision via viscosity and conductivity gradients of solutions placed on both sides of the membrane. The mechanism of rectification is based on electroosmotically induced flow, which fills the entire volume of the pore with a single solution from either side of the membrane. The highly predictable rectifying system can find various applications, including measuring viscosity of unknown media and tuning electrokinetic passage of particles.

[1]  Z. Siwy,et al.  Experimental Investigation of Dynamic Deprotonation/Protonation of Highly Charged Particles , 2017 .

[2]  Reginald M. Penner,et al.  Solid-State Ionic Diodes Demonstrated in Conical Nanopores , 2017 .

[3]  M. Toimil-Molares,et al.  Bioinspired integrated nanosystems based on solid-state nanopores: “iontronic” transduction of biological, chemical and physical stimuli , 2016, Chemical science.

[4]  Z. Siwy,et al.  Polarization of Gold in Nanopores Leads to Ion Current Rectification. , 2016, The journal of physical chemistry letters.

[5]  Omar Azzaroni,et al.  Nanofluidic Diodes with Dynamic Rectification Properties Stemming from Reversible Electrochemical Conversions in Conducting Polymers. , 2015, Journal of the American Chemical Society.

[6]  Wenqing Shi,et al.  Rectification of nanopores in aprotic solvents--transport properties of nanopores with surface dipoles. , 2015, Nanoscale.

[7]  Ke Liu,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[8]  Wolfgang Ensinger,et al.  Bioconjugation-induced ionic current rectification in aptamer-modified single cylindrical nanopores. , 2015, Chemical communications.

[9]  Long Luo,et al.  Resistive-pulse analysis of nanoparticles. , 2014, Annual review of analytical chemistry.

[10]  Wei Guo,et al.  Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. , 2013, Accounts of chemical research.

[11]  M. Wolfram,et al.  Rectification properties of conically shaped nanopores: consequences of miniaturization. , 2012, Physical chemistry chemical physics : PCCP.

[12]  T. Lee,et al.  Contact Angle and Wetting Properties , 2013 .

[13]  Sven Müller,et al.  Electrochemical synthesis of Bi1−xSbx nanowires with simultaneous control on size, composition, and surface roughness , 2012 .

[14]  M. Toimil-Molares,et al.  Polystyrene particles reveal pore substructure as they translocate. , 2012, ACS nano.

[15]  Lei Jiang,et al.  Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  Long Luo,et al.  Tunable negative differential electrolyte resistance in a conical nanopore in glass. , 2012, ACS nano.

[17]  Yugang Wang,et al.  Low-voltage electroosmotic pumps fabricated from track-etched polymer membranes. , 2012, Lab on a chip.

[18]  M. Reed,et al.  Field-effect reconfigurable nanofluidic ionic diodes. , 2011, Nature communications.

[19]  Wei Guo,et al.  Biomimetic smart nanopores and nanochannels. , 2011, Chemical Society reviews.

[20]  Z. Siwy,et al.  Engineered voltage-responsive nanopores. , 2010, Chemical Society reviews.

[21]  E. Yusko,et al.  Electroosmotic flow can generate ion current rectification in nano- and micropores. , 2010, ACS nano.

[22]  H. Kwaan,et al.  Role of plasma proteins in whole blood viscosity: a brief clinical review. , 2010, Clinical hemorheology and microcirculation.

[23]  Salvador Mafe,et al.  Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[24]  William L. Hwang,et al.  Droplet networks with incorporated protein diodes show collective properties. , 2009, Nature nanotechnology.

[25]  Zuzanna S Siwy,et al.  Biosensing with nanofluidic diodes. , 2009, Journal of the American Chemical Society.

[26]  R. Neumann,et al.  A pH-tunable nanofluidic diode with a broad range of rectifying properties. , 2009, ACS nano.

[27]  Reinhard Neumann,et al.  Single conical nanopores displaying pH-tunable rectifying characteristics. manipulating ionic transport with zwitterionic polymer brushes. , 2009, Journal of the American Chemical Society.

[28]  P. Apel,et al.  Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties , 2008, Nanotechnology.

[29]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[30]  Andreas Bund,et al.  Ion current rectification at nanopores in glass membranes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[31]  L. Guo,et al.  Rectified ion transport through concentration gradient in homogeneous silica nanochannels. , 2007, Nano letters.

[32]  A. Majumdar,et al.  Rectification of ionic current in a nanofluidic diode. , 2007, Nano letters.

[33]  Z. Siwy,et al.  Nanofluidic diode. , 2007, Nano letters.

[34]  A. Alcaraz,et al.  A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel. , 2006, The journal of physical chemistry. B.

[35]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[36]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[37]  L. A. Baker,et al.  Protein Biosensors Based on Conical Gold Nanotubes , 2006 .

[38]  Katsuhiro Shirono,et al.  Nanofluidic diode and bipolar transistor. , 2005, Nano letters.

[39]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[40]  B. Schiedt,et al.  A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores , 2005 .

[41]  Peng Chen,et al.  Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. , 2004, Nano letters.

[42]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[43]  Stephen W. Feldberg,et al.  Current Rectification at Quartz Nanopipet Electrodes , 1997 .

[44]  C. Christoforou,et al.  Note on nonaqueous electrokinetic transport in charged porous media , 1984 .

[45]  C. P. Bean,et al.  Electrokinetic measurements with submicron particles and pores by the resistive pulse technique , 1977 .