Textural evolution and phase transformation in titania membranes: Part 1.—Unsupported membranes

Textural evolution in sol–gel derived nanostructured unsupported titania membranes has been studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermal gravimetry (TG), X-ray diffraction (XRD) and N2 adsorption. The anatase-to-rutile phase transformation kinetics were studied using the Avrami model. The precursor gel had a surface area of ca. 165 m2 g–1, which after heat treatment at 600 °C for 8 h reduced to zero. Undoped titania-gel layers transformed to more than 95% rutile after calcination at 600 °C for 8 h. The causes of surface-area reduction and pore growth were anatase crystallite growth and the enhanced sintering of rutile during transformation. Lanthanum oxide was identified as a suitable dopant for shifting the transformation temperature to ca. 850 °C. Lanthanum oxide doped titania showed an improved stability of porous texture compared to that of the undoped titania membranes.

[1]  C. Rao KINETICS AND THERMODYNAMICS OF THE CRYSTAL STRUCTURE TRANSFORMATION OF SPECTROSCOPICALLY PURE ANATASE TO RUTILE , 1961 .

[2]  A. Czanderna,et al.  The anatase-rutile transition. Part 1.—Kinetics of the transformation of pure anatase , 1958 .

[3]  E. F. Heald,et al.  Kinetics and mechanism of the anatase/rutile transformation, as catalyzed by ferric oxide and reducing conditions , 1972 .

[4]  B. Abeles,et al.  Capillary Condensation and Surface Flow in Microporous Vycor Glass , 1991 .

[5]  J. C. Parker,et al.  Raman microprobe study of nanophase TiO_2 and oxidation-induced spectral changes , 1990 .

[6]  W. N. Schreiner,et al.  Profile Fitting for Quantitative Analysis in X-Ray Powder Diffraction , 1982 .

[7]  I. Barin Thermochemical data of pure substances , 1989 .

[8]  B. E. Yoldas Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters , 1986 .

[9]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[10]  R. D. Shannon Phase Transformation Studies in TiO2 Supporting Different Defect Mechanisms in Vacuum‐Reduced and Hydrogen‐Reduced Rutile , 1964 .

[11]  U. Balachandran,et al.  Raman spectra of titanium dioxide , 1982 .

[12]  M. Pijolat,et al.  Influence of water vapour and additives on the surface area stability of γ-Al2O3 , 1992 .

[13]  J.H.L. Voncken,et al.  New method for the measurement of stress in thin drying gel layers, produced during the formation of ceramic membranes , 1992 .

[14]  A. Burggraaf,et al.  Synthesis and characterization of primary alumina, titania and binary membranes , 1992 .

[15]  L. Alexander,et al.  X-ray diffraction procedures , 1954 .

[16]  J. A. Pask,et al.  Kinetics of the Anatase‐Rutile Transformation , 1965 .

[17]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[18]  C. Serna,et al.  Low-temperature nucleation of rutile observed by Raman spectroscopy during crystallization of TiO2 , 1992 .

[19]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[20]  A. Burggraaf,et al.  The preparation and characterization of alumina membranes with ultra-fine pores , 1984 .

[21]  A. Burggraaf,et al.  Synthesis of ceramic membranes , 1992 .

[22]  K. Koumoto,et al.  Inhibition mechanism of the anatase-rutile phase transformation by rare earth oxides , 1983 .

[23]  R. Roy,et al.  Pressure-temperature studies of anatase, brookite, rutile and TiO2(II): A reply , 1968 .

[24]  J. Anderson,et al.  Thermally stable SMSI supports: Iridium supported on TiO2-Al2O3 and on Ce-stabilized anatase , 1986 .

[25]  R. Raj,et al.  Sintering Behavior of Ceramic Films Constrained by a Rigid Substrate , 1985 .

[26]  George W. Scherera Sintering with Rigid Inclusions , 1987 .

[27]  A. Matthews The crystallization of anatase and rutile from amorphous titanium dioxide under hydrothermal conditions , 1976 .

[28]  J. Fabre,et al.  New Inorganic Ultrafiltration Membranes: Titania and Zirconia Membranes , 1989 .

[29]  David R. Clarke,et al.  Measurement of the Crystallographically Transformed Zone Produced by Fracture in Ceramics Containing Tetragonal Zirconia , 1982 .

[30]  Y. Iida,et al.  Grain Growth and Phase Transformation of Titanium Oxide During Calcination , 1961 .

[31]  Tatsuya Okubo,et al.  Densification of nanostructured titania assisted by a phase transformation , 1992, Nature.

[32]  M. Thouless Bridging and Damage Zones in Crack Growth , 1988 .

[33]  R. Siegel,et al.  Raman spectroscopy of nanophase TiO_2 , 1989 .

[34]  M. Pijolat,et al.  Initial Sintering of Submicrometer Titania Anatase Powder , 1990 .

[35]  M. G. Katz,et al.  New insights into the structure of microporous membranes obtained using a new pore size evaluation method , 1986 .

[36]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[37]  A. Mey-Marom,et al.  Measurement of active pore size distribution of microporous membranes - a new approach , 1986 .

[38]  R. Raj,et al.  Sintering behavior of bi-modal powder compacts , 1984 .

[39]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[40]  C. A. Smolders,et al.  Permporometry: the determination of the size distribution of active pores in UF membranes , 1992 .

[41]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .