The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain

The dorsal diencephalon, or epithalamus, contains the bilaterally paired habenular nuclei and the pineal complex. The habenulae form part of the dorsal diencephalic conduction (DDC) system, a highly conserved pathway found in all vertebrates. In this review, we shall describe the neuroanatomy of the DDC, consider its physiology and behavioural involvement, and discuss examples of neural asymmetries within both habenular circuitry and the pineal complex. We will discuss studies in zebrafish, which have examined the organization and development of this circuit, uncovered how asymmetry is represented at the level of individual neurons and determined how such left–right differences arise during development.

[1]  J. McKENDRICK,et al.  The Central Nervous System of Vertebrates , 1909, Nature.

[2]  Phylogenetic and Ontogenetic Considerations , 1968 .

[3]  V. Braitenberg,et al.  Exceptions to bilateral symmetry in the epithalamus of lower vertebrates , 1970, The Journal of comparative neurology.

[4]  D. Modianos,et al.  Habenular lesions produce decrements in feminine, but not masculine, sexual behavior in rats. , 1974, Behavioral biology.

[5]  [Quantitative growth analysis of limbic nuclei areas fresh volume in diencephalon and mesencephalon of an albino mouse ontogenic series. I. Nucleus habenulare]. , 1976, Journal fur Hirnforschung.

[6]  [Quantitative growth analysis of limbic nuclei areas fresh volume in diencephalon and mesencephalon of an albino mouse ontogenic series. III. Nucleus interpe-uncularis]. , 1976, Journal fur Hirnforschung.

[7]  W. Nauta,et al.  Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber‐of‐passage problem , 1977, The Journal of comparative neurology.

[8]  G. Aghajanian,et al.  Physiological evidence for habenula as major link between forebrain and midbrain raphe. , 1977, Science.

[9]  A. Weindl,et al.  Projections from the parvocellular vasopressin- and neurophysin-containing neurons of the suprachiasmatic nucleus. , 1978, The American journal of anatomy.

[10]  D. Klein,et al.  Pineal N-acetyltransferase and hydroxyindole-O-methyl-transferase: control by the retinohypothalamic tract and the suprachiasmatic nucleus , 1979, Brain Research.

[11]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[12]  Asymmetry of the habenulae in the elasmobranch "Scyllium stellare". I. Light microscopy. , 1980, Zeitschrift fur mikroskopisch-anatomische Forschung.

[13]  Asymmetry of the habenulae in the elasmobranch "Scyllium stellare". II. Electron microscopy. , 1980, Zeitschrift fur mikroskopisch-anatomische Forschung.

[14]  J. Glowinski,et al.  Selective activation of the mesocortico-frontal dopaminergic neurons induced by lesion of the habenula in the rat , 1980, Brain Research.

[15]  B. A. Flumerfelt,et al.  Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo‐interpeduncular pathway: An HRP study in the rat , 1981, The Journal of comparative neurology.

[16]  A. Reiner,et al.  Habenular asymmetry and the central connections of the parietal eye of the lizard , 1981, The Journal of comparative neurology.

[17]  O. Phillipson,et al.  Demonstration of synaptic input from prefrontal cortex to the habenula in the rat , 1982, Brain Research.

[18]  Robert J. Sutherland,et al.  The dorsal diencephalic conduction system: A review of the anatomy and functions of the habenular complex , 1982, Neuroscience & Biobehavioral Reviews.

[19]  R. Goldstein A gabaergic habenulo-raphe pathway mediation of the hypnogenic effects of vasotocin in cat , 1983, Neuroscience.

[20]  Z. Gottesfeld Origin and distribution of noradrenergic innervation in the habenula: A neurochemical study , 1983, Brain Research.

[21]  F. Fonnum,et al.  Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: Surgical and kainic acid lesions , 1983, Brain Research.

[22]  H. Shibata,et al.  Efferent projections of the interpeduncular complex in the rat, with special reference to its subnuclei: a retrograde horseradish peroxidase study , 1984, Brain Research.

[23]  D. Jacobowitz,et al.  A study of afferent projections to the rat interpeduncular nucleus , 1984, Brain Research Bulletin.

[24]  N. Lenn,et al.  Subdivisions of the interpeduncular nucleus: A proposed nomenclature , 1984, Brain Research Bulletin.

[25]  L. Butcher,et al.  Cholinergic systems in the rat brain: II. Projections to the interpeduncular nucleus , 1985, Brain Research Bulletin.

[26]  C. Gallistel,et al.  Forebrain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  R. Melzack,et al.  Morphine injected into the habenula and dorsal posteromedial thalamus produces analgesia in the formalin test , 1985, Brain Research.

[28]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  W. Nauta,et al.  Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat , 1986, The Journal of comparative neurology.

[30]  D. Fage,et al.  Evidence for, and nature of, the tonic inhibitory influence of habenulointerpeduncular pathways upon cerebral dopaminergic transmission in the rat , 1986, Brain Research.

[31]  B. Morley,et al.  The interpeduncular nucleus. , 1986, International review of neurobiology.

[32]  R. Melzack,et al.  Habenular stimulation produces analgesia in the formalin test , 1986, Neuroscience Letters.

[33]  H. Shibata,et al.  Afferent projections to the interpeduncular nucleus in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase , 1986, The Journal of comparative neurology.

[34]  F. Fonnum,et al.  Topography of cholinergic and substance P pathways in the habenulo-interpeduncular system of the rat. An immunocytochemical and microchemical approach , 1987, Neuroscience.

[35]  M. Murray,et al.  Acetylcholine in the interpeduncular nucleus of the rat: normal distribution and effects of deafferentation , 1987, Brain Research.

[36]  J. Mazziotta,et al.  Cerebral correlates of depressed behavior in rats, visualized using 14C- 2-deoxyglucose autoradiography , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  Eminy H Y Lee,et al.  Role of lateral habenula in the regulation of exploratory behavior and its relationship to stress in rats , 1988, Behavioural Brain Research.

[38]  H. Kimura,et al.  The efferent projections of the rat lateral habenular nucleus revealed by the PHA-L anterograde tracing method , 1988, Brain Research.

[39]  S. Ebbesson,et al.  The left habenular nucleus contains a discrete serotonin-immunoreactive subnucleus in the coho salmon (Oncorhynchus kisutch) , 1988, Neuroscience Letters.

[40]  S. Reppert,et al.  Localization and characterization of melatonin receptors in rodent brain by in vitro autoradiography , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  E. Thornton,et al.  Effort and stress influence the effect of lesion of the habenula complex in one-way active avoidance learning , 1989, Physiology & Behavior.

[42]  A. Benabid,et al.  Cells of the rat lateral habenula respond to high-threshold somatosensory inputs , 1989, Neuroscience Letters.

[43]  A. Mitani,et al.  Differential effects of fasciculus retroflexus lesions on serotonin, glutamate and gamma-aminobutyrate content and choline acetyltransferase activity in the interpeduncular nucleus , 1990, Brain Research Bulletin.

[44]  M. Kemali,et al.  The asymmetry of the habenular nuclei of female and male frogs in spring and in winter , 1990, Brain Research.

[45]  C. Saper 33 – Cholinergic System , 1990 .

[46]  K. Sasaki,et al.  Involvement of the entopeduncular nucleus and the habenula in methamphetamine-induced inhibition of dopamine neurons in the substantia nigra of rats , 1990, Brain Research Bulletin.

[47]  Donald W. Pfaff,et al.  Effects of daytime and nighttime stress on Fos-like immunoreactivity in the paraventricular nucleus of the hypothalamus, the habenula, and the posterior paraventricular nucleus of the thalamus , 1991, Brain Research.

[48]  S. Vincent,et al.  Neuronal NADPH diaphorase is a nitric oxide synthase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Tanemichi Chiba,et al.  Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat: an anterograde tracer PHA-L study , 1991, Brain Research.

[50]  L. Hibbard,et al.  Regional brain glucose metabolism is altered during rapid eye movement sleep in the cat: A preliminary study , 1991, The Journal of comparative neurology.

[51]  R Sandyk,et al.  Pineal and habenula calcification in schizophrenia. , 1992, The International journal of neuroscience.

[52]  M. Murray,et al.  Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  M. Murray,et al.  Habenula and thalamus cell transplants mediate different specific patterns of innervation in the interpeduncular nucleus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  C. Wirsig-Wiechmann,et al.  Distribution of melatonin receptors in the brain of the frog Rana pipiens as revealed by in vitro autoradiography , 1993, Neuroscience.

[55]  H. Korf The Pineal Organ as a Component of the Biological Clock , 1994, Annals of the New York Academy of Sciences.

[56]  R. Anadón,et al.  Afferent and efferent connections of the habenula in the larval sea lamprey (Petromyzon marinus L.): An experimental study , 1994, The Journal of comparative neurology.

[57]  J. Rosenblatt,et al.  Lateral habenula neurons are necessary for the hormonal onset of maternal behavior and for the display of postpartum estrus in naturally parturient female rats. , 1995, Behavioral neuroscience.

[58]  A. Benabid,et al.  Simultaneous Recording of Spontaneous Activities and Nociceptive Responses from Neurons in the Pars Compacta of Substantia Nigra and in the Lateral Habenula , 1996, The European journal of neuroscience.

[59]  G. Rosen,et al.  Cellular, Morphometric, Ontogenetic and Connectional Substrates of Anatomical Asymmetry , 1996, Neuroscience & Biobehavioral Reviews.

[60]  Justin A. Harris,et al.  Diencephalic Asymmetries , 1996, Neuroscience & Biobehavioral Reviews.

[61]  Khashayar Farsad,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 1996, The Yale Journal of Biology and Medicine.

[62]  M. Murray,et al.  Lesion of the habenular efferent pathway produces anxiety and locomotor hyperactivity in rats: a comparison of the effects of neonatal and adult lesions , 1996, Behavioural Brain Research.

[63]  R. Anadón,et al.  Afferent and efferent connections of the habenula in the rainbow trout (Oncorhynchus mykiss): An indocarbocyanine dye (DiI) study , 1996, The Journal of comparative neurology.

[64]  Á. Miklósi,et al.  Behavioural Lateralisation of the Tetrapod Type in the Zebrafish (Brachydanio Rerio) , 1997, Physiology & Behavior.

[65]  J. Stewart,et al.  Tail Pinch Induces Fos Immunoreactivity Within Several Regions of the Male Rat Brain: Effects of Age , 1997, Physiology & Behavior.

[66]  V. Guglielmotti,et al.  Asymmetry in the Left and Right Habenulo-Interpeduncular Tracts in the Frog , 1998, Brain Research Bulletin.

[67]  Hannu Olkkonen,et al.  The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats , 1998, Brain Research Bulletin.

[68]  M. Halpern,et al.  Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling , 1998, Nature.

[69]  A. Vita,et al.  Epithalamus calcifications in schizophrenia , 1998, European Archives of Psychiatry and Clinical Neuroscience.

[70]  V. Guglielmotti,et al.  Nitric oxide synthase activity reveals an asymmetrical organization of the frog habenulae during development: A histochemical and cytoarchitectonic study from tadpoles to the mature Rana esculenta, with notes on the pineal complex , 1999, The Journal of comparative neurology.

[71]  Á. Miklósi,et al.  Right eye use associated with decision to bite in zebrafish , 1999, Behavioural Brain Research.

[72]  J. Falcón Cellular circadian clocks in the pineal , 1999, Progress in Neurobiology.

[73]  A. Diehl,et al.  Selective targeting of habenular, thalamic midline and monoaminergic brainstem neurons by neurotropic influenza A virus in mice. , 1999, Journal of neurovirology.

[74]  J. Balthazart,et al.  Performance of appetitive or consummatory components of male sexual behavior is mediated by different brain areas: a 2-deoxyglucose autoradiographic study , 1999, Neuroscience.

[75]  R. Vertes,et al.  Projections of the median raphe nucleus in the rat , 1999, The Journal of comparative neurology.

[76]  Karl J. Friston,et al.  Covariation of Activity in Habenula and Dorsal Raphé Nuclei Following Tryptophan Depletion , 1999, NeuroImage.

[77]  M. Harrington,et al.  Pituitary Adenylate Cyclase Activating Peptide Phase Shifts Circadian Rhythms in a Manner Similar to Light , 1999, The Journal of Neuroscience.

[78]  Stephen W. Wilson,et al.  A Nodal Signaling Pathway Regulates the Laterality of Neuroanatomical Asymmetries in the Zebrafish Forebrain , 2000, Neuron.

[79]  R. Anadón,et al.  Distribution of choline acetyltransferase (ChAT) immunoreactivity in the central nervous system of a chondrostean, the siberian sturgeon (Acipenser baeri) , 2000, The Journal of comparative neurology.

[80]  Juan Carlos Izpisúa Belmonte,et al.  Asymmetric nodal signaling in the zebrafish diencephalon positions the pineal organ. , 2000, Development.

[81]  Stephen W. Wilson,et al.  Asymmetry in the epithalamus of vertebrates , 2001, Journal of anatomy.

[82]  A. Parent,et al.  Two types of projection neurons in the internal pallidum of primates: Single‐axon tracing and three‐dimensional reconstruction , 2001, The Journal of comparative neurology.

[83]  J. Hannibal Pituitary adenylate cyclase‐activating peptide in the rat central nervous system: An immunohistochemical and in situ hybridization study , 2002, The Journal of comparative neurology.

[84]  F. Gonzalez-Lima,et al.  Water maze training in aged rats: effects on brain metabolic capacity and behavior , 2002, Brain Research.

[85]  B. Küfferle,et al.  Extrapyramidal symptoms with atypical antipsychotics: A [123i]IBZM SPECT study , 2002, European Neuropsychopharmacology.

[86]  G. Ellison,et al.  Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry , 2002, European Neuropsychopharmacology.

[87]  Stephen W. Wilson,et al.  Local Tissue Interactions across the Dorsal Midline of the Forebrain Establish CNS Laterality , 2003, Neuron.

[88]  D. V. von Cramon,et al.  Error Monitoring Using External Feedback: Specific Roles of the Habenular Complex, the Reward System, and the Cingulate Motor Area Revealed by Functional Magnetic Resonance Imaging , 2003, The Journal of Neuroscience.

[89]  B. Kocsis,et al.  Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus , 2003, The European journal of neuroscience.

[90]  M. Halpern,et al.  The parapineal mediates left-right asymmetry in the zebrafish diencephalon , 2003, Development.

[91]  M. Halpern,et al.  Leaning to the left: laterality in the zebrafish forebrain , 2003, Trends in Neurosciences.

[92]  M. Wullimann,et al.  Identification and morphogenesis of the eminentia thalami in the zebrafish , 2004, The Journal of comparative neurology.

[93]  T. Deguchi,et al.  Localization of hydroxyindole O-methyltransferase-synthesizing cells in bovine epithalamus: immunocytochemistry and in-situ hybridization , 1991, Cell and Tissue Research.

[94]  O. Rønnekleiv,et al.  Brain-pineal nervous connections in the rat: An ultrastructure study following habenular lesion , 1979, Experimental Brain Research.

[95]  M. Bentivoglio,et al.  The epithalamus of the developing and adult frog: calretinin expression and habenular asymmetry in Rana esculenta , 2004, Brain Research.

[96]  C. Pycock,et al.  Dopamine neurones of the ventral tegmentum project to both medial and lateral habenula , 2004, Experimental Brain Research.

[97]  M. Concha The dorsal diencephalic conduction system of zebrafish as a model of vertebrate brain lateralisation. , 2004, Neuroreport.

[98]  W. Klemm Habenular and interpeduncularis nuclei: shared components in multiple-function networks. , 2004, Medical science monitor : international medical journal of experimental and clinical research.

[99]  A. Schleicher,et al.  Growth of fresh volumes and spontaneous cell death in the nuclei habenulae of albino rats during ontogenesis , 2004, Anatomy and Embryology.

[100]  D. Swaab,et al.  Intra- and extrahypothalamic vasopressin and oxytocin pathways in the rat , 1978, Cell and Tissue Research.

[101]  R. Vertes,et al.  Projections between the interpeduncular nucleus and basal forebrain in the rat as demonstrated by the anterograde and retrograde transport of WGA-HRP , 2004, Experimental Brain Research.

[102]  E. Thornton,et al.  Attenuated response to nomifensine in rats during a swim test following lesion of the habenula complex , 2004, Psychopharmacology.

[103]  Á. Miklósi,et al.  Early asymmetries in the behaviour of zebrafish larvae , 2004, Behavioural Brain Research.

[104]  P. Kelly,et al.  Habenula lesions cause impaired cognitive performance in rats: implications for schizophrenia , 2004, The European journal of neuroscience.

[105]  P. Kelly,et al.  Bilateral Lesions of the Habenula Induce Attentional Disturbances in Rats , 2005, Neuropsychopharmacology.

[106]  W. Hodos,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 2005 .

[107]  Su-Youne Chang,et al.  Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus , 2005, The Journal of comparative neurology.

[108]  C. Niell,et al.  Functional Imaging Reveals Rapid Development of Visual Response Properties in the Zebrafish Tectum , 2005, Neuron.

[109]  Y. Kuan,et al.  Directional asymmetry of the zebrafish epithalamus guides dorsoventral innervation of the midbrain target , 2005, Development.

[110]  Stephen W. Wilson,et al.  Laterotopic Representation of Left-Right Information onto the Dorso-Ventral Axis of a Zebrafish Midbrain Target Nucleus , 2005, Current Biology.

[111]  B. Rusak,et al.  Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro , 2005, Neuroscience.

[112]  Stephen W. Wilson,et al.  fsi Zebrafish Show Concordant Reversal of Laterality of Viscera, Neuroanatomy, and a Subset of Behavioral Responses , 2005, Current Biology.

[113]  H. Holcomb,et al.  Schizophrenia in translation: the presence of absence: habenular regulation of dopamine neurons and the encoding of negative outcomes. , 2005, Schizophrenia bulletin.

[114]  K. Ressler,et al.  Lesions of the habenula produce stress- and dopamine-dependent alterations in prepulse inhibition and locomotion , 2006, Brain Research.

[115]  Luigia Cristino,et al.  The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry , 2006, Brain Research Bulletin.

[116]  P. Kelly,et al.  Habenula lesions alter synaptic plasticity within the fimbria–accumbens pathway in the rat , 2006, Neuroscience.

[117]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[118]  W. Schwartz,et al.  Hamsters Running on Time: Is the Lateral Habenula a Part of the Clock? , 2006, Chronobiology international.

[119]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[120]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[121]  P. Kelly,et al.  A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition , 2007, Neuroscience & Biobehavioral Reviews.

[122]  Melina E. Hale,et al.  A topographic map of recruitment in spinal cord , 2007, Nature.

[123]  R. Veh,et al.  Dopaminergic projections from the VTA substantially contribute to the mesohabenular pathway in the rat , 2007, Neuroscience Letters.

[124]  Tomomi Sato,et al.  Temporally regulated asymmetric neurogenesis causes left-right difference in the zebrafish habenular structures. , 2007, Developmental cell.

[125]  Seok-Hyung Kim,et al.  Six3 Represses Nodal Activity to Establish Early Brain Asymmetry in Zebrafish , 2007, Neuron.

[126]  Y. Kuan,et al.  Neuropilin asymmetry mediates a left-right difference in habenular connectivity , 2007, Development.

[127]  M. Hendricks,et al.  Asymmetric innervation of the habenula in zebrafish , 2007, The Journal of comparative neurology.

[128]  Stephen W. Wilson,et al.  Wnt/Axin1/β-Catenin Signaling Regulates Asymmetric Nodal Activation, Elaboration, and Concordance of CNS Asymmetries , 2007, Neuron.

[129]  Stephen W. Wilson,et al.  Brain asymmetry is encoded at the level of axon terminal morphology , 2008, Neural Development.

[130]  R. Pobbe,et al.  Involvement of the lateral habenula in the regulation of generalized anxiety- and panic-related defensive responses in rats. , 2008, Life sciences.

[131]  B. Moghaddam,et al.  Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release , 2008, The European journal of neuroscience.

[132]  R. Salas,et al.  Influence of Neuronal Nicotinic Receptors over Nicotine Addiction and Withdrawal , 2008, Experimental biology and medicine.

[133]  Thomas Knöpfel Expanding the toolbox for remote control of neuronal circuits , 2008, Nature Methods.

[134]  S. Budaev,et al.  Light during embryonic development modulates patterns of lateralization strongly and similarly in both zebrafish and chick , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[135]  Hua Zhao,et al.  Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus , 2008, Behavioural Brain Research.

[136]  M. Concha,et al.  Zebrafish and medaka: model organisms for a comparative developmental approach of brain asymmetry , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[137]  Stephen W. Wilson,et al.  An Fgf8-Dependent Bistable Cell Migratory Event Establishes CNS Asymmetry , 2009, Neuron.