The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels

Dual to the usual noisy channel coding problem, where a noisy (classical or quantum) channel is used to simulate a noiseless one, reverse Shannon theorems concern the use of noiseless channels to simulate noisy ones, and more generally the use of one noisy channel to simulate another. For channels of nonzero capacity, this simulation is always possible, but for it to be efficient, auxiliary resources of the proper kind and amount are generally required. In the classical case, shared randomness between sender and receiver is a sufficient auxiliary resource, regardless of the nature of the source, but in the quantum case, the requisite auxiliary resources for efficient simulation depend on both the channel being simulated, and the source from which the channel inputs are coming. For tensor power sources (the quantum generalization of classical memoryless sources), entanglement in the form of standard ebits (maximally entangled pairs of qubits) is sufficient, but for general sources, which may be arbitrarily correlated or entangled across channel inputs, additional resources, such as entanglement-embezzling states or backward communication, are generally needed. Combining existing and new results, we establish the amounts of communication and auxiliary resources needed in both the classical and quantum cases, the tradeoffs among them, and the loss of simulation efficiency when auxiliary resources are absent or insufficient. In particular, we find a new single-letter expression for the excess forward communication cost of coherent feedback simulations of quantum channels (i.e., simulations in which the sender retains what would escape into the environment in an ordinary simulation), on nontensor-power sources in the presence of unlimited ebits but no other auxiliary resource. Our results on tensor power sources establish a strong converse to the entanglement-assisted capacity theorem.

[1]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[2]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[3]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[4]  M. Hayashi,et al.  Optimal Visible Compression Rate For Mixed States Is Determined By Entanglement Of Purification , 2005, quant-ph/0511267.

[5]  Masahito Hayashi,et al.  Universal Approximation of Multi-copy States and Universal Quantum Lossless Data Compression , 2008, 0806.1091.

[6]  Masahito Hayashi,et al.  Variable length universal entanglement concentration by local operations and its application to teleportation and dense coding , 2001, quant-ph/0109028.

[7]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[8]  Masahito Hayashi,et al.  Simple construction of quantum universal variable-length source coding , 2002, IEEE International Symposium on Information Theory, 2003. Proceedings..

[9]  I. Devetak,et al.  Triangle of dualities between quantum communication protocols. , 2006, Physical review letters.

[10]  Mark M. Wilde,et al.  Quantum Rate-Distortion Coding With Auxiliary Resources , 2012, IEEE Transactions on Information Theory.

[11]  I. Devetak,et al.  Exact cost of redistributing multipartite quantum states. , 2006, Physical review letters.

[12]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[13]  M. Hayashi Exponents of quantum fixed-length pure-state source coding , 2002, quant-ph/0202002.

[14]  Richard Jozsa,et al.  Universal quantum information compression and degrees of prior knowledge , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  A. Winter Compression of sources of probability distributions and density operators , 2002, quant-ph/0208131.

[16]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[17]  Renée J. Miller,et al.  Secret! , 2010, IEEE CSIT Newsletter.

[18]  A. Winter,et al.  Communication cost of entanglement transformations , 2002, quant-ph/0204092.

[19]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[20]  Matthias Christandl,et al.  The Spectra of Quantum States and the Kronecker Coefficients of the Symmetric Group , 2006 .

[21]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[22]  Hoi-Kwong Lo,et al.  A tight lower bound on the classical communication cost of entanglement dilution , 2004, IEEE Transactions on Information Theory.

[23]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[24]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  A. S. Holevo Complementary Channels and the Additivity Problem , 2005 .

[26]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[27]  C. Adami,et al.  VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .

[28]  Sergio Verdú,et al.  Simulation of random processes and rate-distortion theory , 1996, IEEE Trans. Inf. Theory.

[29]  Igor Devetak,et al.  Inequalities and separations among assisted capacities of quantum channels. , 2006, Physical review letters.

[30]  Andreas J. Winter Identification via Quantum Channels in the Presence of Prior Correlation and Feedback , 2005, Electron. Notes Discret. Math..

[31]  A. Winter,et al.  “Squashed entanglement”: An additive entanglement measure , 2003, quant-ph/0308088.

[32]  R. Werner,et al.  Tema con variazioni: quantum channel capacity , 2003, quant-ph/0311037.

[33]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[34]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[35]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[36]  Matthias Christandl,et al.  Uncertainty, monogamy, and locking of quantum correlations , 2005, IEEE Transactions on Information Theory.

[37]  Masahito Hayashi,et al.  Universal distortion-free entanglement concentration , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[38]  Haim H. Permuter,et al.  Coordination Capacity , 2009, IEEE Transactions on Information Theory.

[39]  R. Werner,et al.  Counterexample to an additivity conjecture for output purity of quantum channels , 2002, quant-ph/0203003.

[40]  A. Winter,et al.  Compression of quantum-measurement operations , 2000, quant-ph/0012128.

[41]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[42]  P. Hayden,et al.  Universal entanglement transformations without communication , 2003 .

[43]  A. Holevo Remarks on the classical capacity of quantum channel , 2002, quant-ph/0212025.

[44]  M. Horodecki,et al.  Quantum information can be negative , 2005, quant-ph/0505062.

[45]  A. Harrow Applications of coherent classical communication and the schur transform to quantum information theory , 2005, quant-ph/0512255.

[46]  Amiel Feinstein,et al.  Information and information stability of random variables and processes , 1964 .

[47]  Debbie W. Leung,et al.  Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations , 2010, IEEE Transactions on Information Theory.

[48]  Mark M. Wilde,et al.  Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.

[49]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[50]  Jonathan Oppenheim,et al.  A paradigm for entanglement theory based on quantum communication , 2008, 0801.0458.

[51]  John A. Cortese Holevo-Schumacher-Westmoreland channel capacity for a class of qudit unital channels , 2004 .

[52]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[53]  Mikhail N. Vyalyi,et al.  Classical and Quantum Computation , 2002, Graduate studies in mathematics.

[54]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[55]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[56]  Ashish V. Thapliyal,et al.  Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.

[57]  Igor Devetak,et al.  Optimal Quantum Source Coding With Quantum Side Information at the Encoder and Decoder , 2007, IEEE Transactions on Information Theory.

[58]  Mark M. Wilde,et al.  The information-theoretic costs of simulating quantum measurements , 2012, ArXiv.

[59]  A. Harrow Entanglement spread and clean resource inequalities , 2009, 0909.1557.

[60]  V. Paulsen Completely Bounded Maps and Operator Algebras: Completely Bounded Multilinear Maps and the Haagerup Tensor Norm , 2003 .

[61]  Mario Berta,et al.  A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem , 2009, TQC.

[62]  M. Christandl The Structure of Bipartite Quantum States - Insights from Group Theory and Cryptography , 2006, quant-ph/0604183.

[63]  A. Winter ‘‘Extrinsic’’ and ‘‘Intrinsic’’ Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures , 2001, quant-ph/0109050.

[64]  Hoi-Kwong Lo,et al.  Classical Communication Cost of Entanglement Manipulation: Is Entanglement an Interconvertible Resource? , 1999, quant-ph/9902045.

[65]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[66]  Graeme Smith,et al.  Extensive nonadditivity of privacy. , 2009, Physical review letters.

[67]  Andreas J. Winter,et al.  Secret, public and quantum correlation cost of triples of random variables , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[68]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[69]  Jianxin Chen,et al.  Non-Additivity of the Entanglement of Purification (Beyond Reasonable Doubt) , 2012, ArXiv.

[70]  R. Goodman,et al.  Representations and Invariants of the Classical Groups , 1998 .

[71]  A. Harrow,et al.  Superdense coding of quantum states. , 2003, Physical review letters.

[72]  M. Horodecki,et al.  The entanglement of purification , 2002, quant-ph/0202044.

[73]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[74]  Paul W. Cuff,et al.  Communication requirements for generating correlated random variables , 2008, 2008 IEEE International Symposium on Information Theory.

[75]  Masahito Hayashi,et al.  Universal distortion-free entanglement concentration , 2007 .

[76]  S. Massar,et al.  Amount of information obtained by a quantum measurement , 1999, quant-ph/9907066.

[77]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[78]  M. Keyl QUANTUM STATE ESTIMATION AND LARGE DEVIATIONS , 2004 .

[79]  Andreas J. Winter Identification Via Quantum Channels in the Presence of Prior Correlation and Feedback , 2006, GTIT-C.

[80]  Matthias Christandl,et al.  Postselection technique for quantum channels with applications to quantum cryptography. , 2008, Physical review letters.

[81]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[82]  Aram Harrow Coherent communication of classical messages. , 2004, Physical review letters.

[83]  I. Devetak A triangle of dualities: reversibly decomposable quantum channels, source-channel duality, and time reversal , 2005 .

[84]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[85]  Mark M. Wilde,et al.  Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.

[86]  P. Hayden,et al.  Quantum state transformations and the Schubert calculus , 2004, quant-ph/0410052.

[87]  Garry Bowen FEEDBACK IN QUANTUM COMMUNICATION , 2004 .

[88]  S. Wehner,et al.  A strong converse for classical channel coding using entangled inputs. , 2009, Physical review letters.

[89]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[90]  Garry Bowen Quantum feedback channels , 2004, IEEE Transactions on Information Theory.

[91]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[92]  Rudolf Ahlswede,et al.  Strong converse for identification via quantum channels , 2000, IEEE Trans. Inf. Theory.

[93]  Dennis Kretschmann,et al.  The Information-Disturbance Tradeoff and the Continuity of Stinespring's Representation , 2008, IEEE Transactions on Information Theory.

[94]  C. H. Bennett,et al.  Universal quantum data compression via nondestructive tomography , 2004, quant-ph/0403078.

[95]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[96]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[97]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[98]  M. Junge,et al.  Multiplicativity of Completely Bounded p-Norms Implies a New Additivity Result , 2005, quant-ph/0506196.

[99]  K. Audenaert A sharp continuity estimate for the von Neumann entropy , 2006, quant-ph/0610146.