Borg-Marchenko-type Uniqueness Results for CMV Operators
暂无分享,去创建一个
[1] Barry Simon,et al. CMV matrices: Five years after , 2006, math/0603093.
[2] A. Ramm. Property C for Ordinary Differential Equations and Applications to Inverse Scattering , 1999 .
[3] F. Gesztesy,et al. Uniqueness Results for Matrix-Valued Schrodinger, Jacobi, and Dirac-Type Operators , 2000 .
[4] Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.
[5] Leandro Moral,et al. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .
[6] Analogs of the m -function in the theory of orthogonal polynomials on the unit circle , 2003, math/0311050.
[7] Alexander Sakhnovich,et al. Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems , 2002 .
[8] Mark J. Ablowitz,et al. Nonlinear differential−difference equations , 1975 .
[9] S. Verblunsky,et al. On Positive Harmonic Functions: A Contribution to the Algebra of Fourier Series , 1935 .
[10] B. M. Levitan,et al. Determination of a Differential Equation by Two of its Spectra , 1964 .
[11] F. Gesztesy. Inverse spectral theory as influenced by Barry Simon , 2010, 1002.0388.
[12] Angelika Bunse-Gerstner,et al. Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .
[13] J. Geronimo,et al. Inverse Problem for Polynomials Orthogonal on the Unit Circle , 1998 .
[14] Vadym Vekslerchik,et al. Finite-genus solutions for the Ablowitz-Ladik hierarchy , 1999, solv-int/9903004.
[15] Y. Berezansky,et al. THE COMPLEX MOMENT PROBLEM AND DIRECT AND INVERSE SPECTRAL PROBLEMS FOR THE BLOCK JACOBI TYPE BOUNDED NORMAL MATRICES , 2006 .
[16] Alexander G. Ramm,et al. Property C for ODE and applications to inverse problems. , 1999 .
[17] Barry Simon,et al. Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.
[18] Alain Joye,et al. Spectral Analysis of Unitary Band Matrices , 2003 .
[19] M. Ablowitz,et al. Nonlinear differential–difference equations and Fourier analysis , 1976 .
[20] P. Yuditskii,et al. Asymptotic behavior of polynomials orthonormal on a homogeneous set , 2002, math/0611856.
[21] Fritz Gesztesy,et al. Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle , 2006, J. Approx. Theory.
[22] Orthogonal polynomials on the unit circle: New results , 2004, math/0405111.
[23] Circular parameters of polynomials orthogonal on several arcs of the unit circle , 2004 .
[24] F. Gesztesy,et al. A Borg‐Type Theorem Associated with Orthogonal Polynomials on the Unit Circle , 2005, math/0501212.
[25] Weyl matrix functions and inverse problems for discrete Dirac type self-adjoint system: explicit and general solutions , 2007, math/0703369.
[26] Riemann-Hilbert Methods in the Theory of Orthogonal Polynomials , 2006, math/0603309.
[27] C. David Levermore,et al. Finite genus solutions to the Ablowitz‐Ladik equations , 2010 .
[28] R. Schilling. A systematic approach to the soliton equations of a discrete eigenvalue problem , 1989 .
[29] N. Akhiezer,et al. The Classical Moment Problem. , 1968 .
[30] I. Gel'fand,et al. On the determination of a differential equation from its spectral function , 1955 .
[31] S. Verblunsky,et al. On Positive Harmonic Functions , 1936 .
[32] H. Holden,et al. Algebro-Geometric Finite-Band Solutions of the Ablowitz–Ladik Hierarchy , 2006, nlin/0611055.
[33] J. Geronimus. On the Trigonometric Moment Problem , 1946 .
[34] Barry Simon,et al. A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.
[35] R. Weikard. A local Borg-Marchenko theorem for difference equations with complex coefficients , 2004 .
[36] I︠a︡. L. Geronimus. Polynomials orthogonal on a circle and their applications , 1954 .
[37] Stephen Clark,et al. WEYL-TITCHMARSH THEORY AND BORG-MARCHENKO-TYPE UNIQUENESS RESULTS FOR CMV OPERATORS WITH MATRIX-VALUED , 2010, 1002.0387.
[38] B. M. Brown,et al. A local borg-marchenko theorem for complex potentials , 2002 .
[39] Barry Simon,et al. A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.
[40] F. Gesztesy,et al. On Local Borg–Marchenko Uniqueness Results , 2000 .
[41] Helge Holden,et al. Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .
[42] G. Szegő. Beiträge zur Theorie der Toeplitzschen Formen , 1920 .
[43] G. Szegő. Beiträge zur Theorie der Toeplitzschen Formen , 1921 .
[44] R. Bolstein,et al. Expansions in eigenfunctions of selfadjoint operators , 1968 .
[45] Christer Bennewitz,et al. A Proof of the Local Borg–Marchenko Theorem , 2001 .
[46] K. Knudsen. On a local uniqueness result for the inverse Sturm-Liouville problem , 2001 .
[47] M. Ablowitz,et al. On the solution of a class of nonlinear partial di erence equations , 1977 .
[48] J. Geronimo,et al. A Difference Equation Arising from the Trigonometric Moment Problem Having Random Reflection Coefficients - An Operator Theoretic Approach , 1994 .
[49] J. Geronimo,et al. ROTATION NUMBER ASSOCIATED WITH DIFFERENCE EQUATIONS SATISFIED BY POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE , 1996 .
[50] G. Szegő. Zeros of orthogonal polynomials , 1939 .
[51] Barry Simon,et al. OPUC on one foot , 2005, math/0502485.
[52] J. Geronimo,et al. An Inverse Problem Associated with Polynomials , 1998 .
[53] Steve Clark,et al. Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators , 2001 .
[54] H. Holden,et al. Institute for Mathematical Physics the Ablowitz–ladik Hierarchy Revisited the Ablowitz–ladik Hierarchy Revisited , 2022 .
[55] David S. Watkins,et al. Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..
[56] A. Sakhnovich. Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg–Marchenko theorems , 2005, math/0511594.
[57] CMV matrices in random matrix theory and integrable systems: a survey , 2005, math-ph/0510045.
[58] B. M. Levitan,et al. Inverse Sturm-Liouville Problems , 1987 .
[59] Mark J. Ablowitz,et al. A Nonlinear Difference Scheme and Inverse Scattering , 1976 .
[60] P. Nevai,et al. Szegő Difference Equations, Transfer Matrices¶and Orthogonal Polynomials on the Unit Circle , 2001 .
[61] Helge Holden,et al. Algebro-Geometric Solutions of the Baxter–Szegő Difference Equation , 2005 .
[62] Barry Simon,et al. Orthogonal polynomials on the unit circle. Part 1 , 2005 .
[63] M. Horvath. On the inverse spectral theory of Schrödinger and Dirac operators , 2001 .