Borg-Marchenko-type Uniqueness Results for CMV Operators

We prove local and global versions of Borg-Marchenko-type uniqueness theorems for half-lattice and full-lattice CMV operators (CMV for Cantero, Moral, and Velazquez \cite{CMV03}). While our half-lattice results are formulated in terms of Weyl-Titchmarsh functions, our full-lattice results involve the diagonal and main off-diagonal Green's functions.

[1]  Barry Simon,et al.  CMV matrices: Five years after , 2006, math/0603093.

[2]  A. Ramm Property C for Ordinary Differential Equations and Applications to Inverse Scattering , 1999 .

[3]  F. Gesztesy,et al.  Uniqueness Results for Matrix-Valued Schrodinger, Jacobi, and Dirac-Type Operators , 2000 .

[4]  Lax pairs for the Ablowitz-Ladik system via orthogonal polynomials on the unit circle , 2004, math-ph/0412047.

[5]  Leandro Moral,et al.  Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle , 2002 .

[6]  Analogs of the m -function in the theory of orthogonal polynomials on the unit circle , 2003, math/0311050.

[7]  Alexander Sakhnovich,et al.  Dirac type and canonical systems: spectral and Weyl–Titchmarsh matrix functions, direct and inverse problems , 2002 .

[8]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[9]  S. Verblunsky,et al.  On Positive Harmonic Functions: A Contribution to the Algebra of Fourier Series , 1935 .

[10]  B. M. Levitan,et al.  Determination of a Differential Equation by Two of its Spectra , 1964 .

[11]  F. Gesztesy Inverse spectral theory as influenced by Barry Simon , 2010, 1002.0388.

[12]  Angelika Bunse-Gerstner,et al.  Schur parameter pencils for the solution of the unitary eigenproblem , 1991 .

[13]  J. Geronimo,et al.  Inverse Problem for Polynomials Orthogonal on the Unit Circle , 1998 .

[14]  Vadym Vekslerchik,et al.  Finite-genus solutions for the Ablowitz-Ladik hierarchy , 1999, solv-int/9903004.

[15]  Y. Berezansky,et al.  THE COMPLEX MOMENT PROBLEM AND DIRECT AND INVERSE SPECTRAL PROBLEMS FOR THE BLOCK JACOBI TYPE BOUNDED NORMAL MATRICES , 2006 .

[16]  Alexander G. Ramm,et al.  Property C for ODE and applications to inverse problems. , 1999 .

[17]  Barry Simon,et al.  Orthogonal Polynomials on the Unit Circle , 2004, Encyclopedia of Special Functions: The Askey-Bateman Project.

[18]  Alain Joye,et al.  Spectral Analysis of Unitary Band Matrices , 2003 .

[19]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[20]  P. Yuditskii,et al.  Asymptotic behavior of polynomials orthonormal on a homogeneous set , 2002, math/0611856.

[21]  Fritz Gesztesy,et al.  Weyl-Titchmarsh theory for CMV operators associated with orthogonal polynomials on the unit circle , 2006, J. Approx. Theory.

[22]  Orthogonal polynomials on the unit circle: New results , 2004, math/0405111.

[23]  Circular parameters of polynomials orthogonal on several arcs of the unit circle , 2004 .

[24]  F. Gesztesy,et al.  A Borg‐Type Theorem Associated with Orthogonal Polynomials on the Unit Circle , 2005, math/0501212.

[25]  Weyl matrix functions and inverse problems for discrete Dirac type self-adjoint system: explicit and general solutions , 2007, math/0703369.

[26]  Riemann-Hilbert Methods in the Theory of Orthogonal Polynomials , 2006, math/0603309.

[27]  C. David Levermore,et al.  Finite genus solutions to the Ablowitz‐Ladik equations , 2010 .

[28]  R. Schilling A systematic approach to the soliton equations of a discrete eigenvalue problem , 1989 .

[29]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[30]  I. Gel'fand,et al.  On the determination of a differential equation from its spectral function , 1955 .

[31]  S. Verblunsky,et al.  On Positive Harmonic Functions , 1936 .

[32]  H. Holden,et al.  Algebro-Geometric Finite-Band Solutions of the Ablowitz–Ladik Hierarchy , 2006, nlin/0611055.

[33]  J. Geronimus On the Trigonometric Moment Problem , 1946 .

[34]  Barry Simon,et al.  A new approach to inverse spectral theory, II. General real potentials and the connection to the spectral measure , 1998, math/9809182.

[35]  R. Weikard A local Borg-Marchenko theorem for difference equations with complex coefficients , 2004 .

[36]  I︠a︡. L. Geronimus Polynomials orthogonal on a circle and their applications , 1954 .

[37]  Stephen Clark,et al.  WEYL-TITCHMARSH THEORY AND BORG-MARCHENKO-TYPE UNIQUENESS RESULTS FOR CMV OPERATORS WITH MATRIX-VALUED , 2010, 1002.0387.

[38]  B. M. Brown,et al.  A local borg-marchenko theorem for complex potentials , 2002 .

[39]  Barry Simon,et al.  A new approach to inverse spectral theory, I. Fundamental formalism , 1999, math/9906118.

[40]  F. Gesztesy,et al.  On Local Borg–Marchenko Uniqueness Results , 2000 .

[41]  Helge Holden,et al.  Soliton Equations and Their Algebro-Geometric Solutions: The AKNS Hierarchy , 2003 .

[42]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1920 .

[43]  G. Szegő Beiträge zur Theorie der Toeplitzschen Formen , 1921 .

[44]  R. Bolstein,et al.  Expansions in eigenfunctions of selfadjoint operators , 1968 .

[45]  Christer Bennewitz,et al.  A Proof of the Local Borg–Marchenko Theorem , 2001 .

[46]  K. Knudsen On a local uniqueness result for the inverse Sturm-Liouville problem , 2001 .

[47]  M. Ablowitz,et al.  On the solution of a class of nonlinear partial di erence equations , 1977 .

[48]  J. Geronimo,et al.  A Difference Equation Arising from the Trigonometric Moment Problem Having Random Reflection Coefficients - An Operator Theoretic Approach , 1994 .

[49]  J. Geronimo,et al.  ROTATION NUMBER ASSOCIATED WITH DIFFERENCE EQUATIONS SATISFIED BY POLYNOMIALS ORTHOGONAL ON THE UNIT CIRCLE , 1996 .

[50]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[51]  Barry Simon,et al.  OPUC on one foot , 2005, math/0502485.

[52]  J. Geronimo,et al.  An Inverse Problem Associated with Polynomials , 1998 .

[53]  Steve Clark,et al.  Weyl-Titchmarsh M-Function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators , 2001 .

[54]  H. Holden,et al.  Institute for Mathematical Physics the Ablowitz–ladik Hierarchy Revisited the Ablowitz–ladik Hierarchy Revisited , 2022 .

[55]  David S. Watkins,et al.  Some Perspectives on the Eigenvalue Problem , 1993, SIAM Rev..

[56]  A. Sakhnovich Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg–Marchenko theorems , 2005, math/0511594.

[57]  CMV matrices in random matrix theory and integrable systems: a survey , 2005, math-ph/0510045.

[58]  B. M. Levitan,et al.  Inverse Sturm-Liouville Problems , 1987 .

[59]  Mark J. Ablowitz,et al.  A Nonlinear Difference Scheme and Inverse Scattering , 1976 .

[60]  P. Nevai,et al.  Szegő Difference Equations, Transfer Matrices¶and Orthogonal Polynomials on the Unit Circle , 2001 .

[61]  Helge Holden,et al.  Algebro-Geometric Solutions of the Baxter–Szegő Difference Equation , 2005 .

[62]  Barry Simon,et al.  Orthogonal polynomials on the unit circle. Part 1 , 2005 .

[63]  M. Horvath On the inverse spectral theory of Schrödinger and Dirac operators , 2001 .