Regulation of respiration and energy transduction in cytochrome c oxidase isozymes by allosteric effectors

[1]  T. Tomizaki,et al.  The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å , 1996, Science.

[2]  B. Kadenbach,et al.  Regulation of the H+/e− stoichiometry of cytochrome c oxidase from bovine heart by intramitochondrial ATP/ADP ratios , 1996, FEBS letters.

[3]  B. Kadenbach,et al.  The number of nucleotide binding sites in cytochrome C oxidase. , 1995, Biochemical and biophysical research communications.

[4]  T. Tomizaki,et al.  Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A , 1995, Science.

[5]  D. Linder,et al.  Regulation of mitochondrial energy generation in health and disease. , 1995, Biochimica et biophysica acta.

[6]  R. Capaldi,et al.  Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa. , 1994, Biochemistry.

[7]  F. Rohdich,et al.  Tissue-specific regulation of cytochrome c oxidase efficiency by nucleotides. , 1993, Biochemistry.

[8]  B. Kadenbach,et al.  Tissue-specific regulation of bovine heart cytochrome-c oxidase activity by ADP via interaction with subunit VIa. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B. Ludwig,et al.  Proton slippage in cytochrome c oxidase of Paracoccus denitrificans. Membrane-potential measurements with the two-subunit and three-subunit enzyme. , 1993, European journal of biochemistry.

[10]  B. Kadenbach,et al.  Stoichiometric binding of 2′(or 3′)‐O‐(2,4,6‐trinitrophenyl)adenosine 5′‐triphosphate to bovine heart cytochrome c oxidase , 1992, FEBS letters.

[11]  B. Kadenbach,et al.  Influence of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline modification on proton translocation and membrane potential of reconstituted cytochrome-c oxidase support "proton slippage". , 1991, The Journal of biological chemistry.

[12]  M. Murphy,et al.  Slip and leak in mitochondrial oxidative phosphorylation. , 1989, Biochimica et biophysica acta.

[13]  G. Brown The relative proton stoichiometries of the mitochondrial proton pumps are independent of the proton motive force. , 1989, The Journal of biological chemistry.

[14]  P. Pedersen,et al.  Mitochondrial ATP synthase. Overexpression in Escherichia coli of a rat liver beta subunit peptide and its interaction with adenine nucleotides. , 1988, Journal of Biological Chemistry.

[15]  M. Brand,et al.  Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron transport chain. , 1988, European journal of biochemistry.

[16]  M. Brand,et al.  The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. , 1988, European journal of biochemistry.

[17]  P. Fink,et al.  On the role of subunit III in proton translocation in cytochromec oxidase , 1987, Journal of bioenergetics and biomembranes.

[18]  A. Azzi,et al.  The current-voltage relationships of liposomes and mitochondria. , 1984, The Biochemical journal.

[19]  G. Krishnamoorthy,et al.  Non-ohmic proton conductance of mitochondria and liposomes. , 1984, Biochemistry.

[20]  G. Azzone,et al.  Effect of funiculosin and antimycin A on the redox-driven H+-pumps in mitochondria: on the nature of "leaks'. , 1981, European journal of biochemistry.

[21]  M. Thelen,et al.  Dicyclohexylcarbodiimide binds specifically and covalently to cytochrome c oxidase while inhibiting its H+-translocating activity. , 1980, The Journal of biological chemistry.

[22]  H. Rottenberg,et al.  Non-equilibrium thermodynamics of energy conversion in bioenergetics. , 1979, Biochimica et biophysica acta.

[23]  B. Kadenbach,et al.  Isozymes of cytochrome-c oxidase: characterization and isolation from different tissues. , 1986, Methods in enzymology.

[24]  B. Ludwig Cytochrome c oxidase from Paracoccus denitrificans. , 1986, Methods in enzymology.