A numerical study of strain localization in elasto-thermo-viscoplastic materials using radial basis function networks

This paper presents a numerical simulation of the formation and evolution of strain localization in elasto-thermo-viscoplastic materials (adiabatic shear band) by the indirect/integral radial basis function network (IRBFN) method. The effects of strain and strain rate hardening, plastic heating, and thermal softening are considered. The IRBFN method is enhanced by a new coordinate mapping which helps capture the stiff spatial structure of the resultant band. The discrete IRBFN system is integrated in time by the implicit fifth-order Runge-Kutta method. The obtained results are compared with those of the Modified Smooth Particle Hydrodynamics (MSPH) method and Chebychev Pseudo-spectral (CPS) method.

[1]  J. W. Walter Numerical Experiments on Adiabatic Shear Band Formation in One Dimension , 1992 .

[2]  Romesh C. Batra,et al.  Analysis of adiabatic shear bands in elasto-thermo-viscoplastic materials by modified smoothed-particle hydrodynamics (MSPH) method , 2004 .

[3]  Satya N. Atluri,et al.  A Meshless Local Petrov-Galerkin (MLPG) Approach for 3-Dimensional Elasto-dynamics , 2004 .

[4]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[5]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[6]  Nam Mai-Duy,et al.  Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks , 2001 .

[7]  J. Rice,et al.  A note on some features of the theory of localization of deformation , 1980 .

[8]  A. Molinari,et al.  Analytical Characterization of Shear Localization in Thermoviscoplastic Materials , 1987 .

[9]  Nam Mai-Duy,et al.  Numerical solution of differential equations using multiquadric radial basis function networks , 2001, Neural Networks.

[10]  Leevan Ling,et al.  Adaptive multiquadric collocation for boundary layer problems , 2006 .

[11]  S. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) Approaches for Solving Nonlinear Problems with Large Deformations and Rotations , 2005 .

[12]  L. Ling,et al.  Multiquadric collocation method with integralformulation for boundary layer problems , 2004 .

[13]  R. Batra,et al.  Effect of thermal conductivity on the initiation, growth and bandwidth of adiabatic shear bands , 1991 .

[14]  T. Wright Adiabatic Shear Bands , 1990 .

[15]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[16]  Leevan Ling,et al.  A volumetric integral radial basis function method for time-dependent partial differential equations. I. Formulation , 2004 .

[17]  P. Perzyna,et al.  The Physics and Mathematics of Adiabatic Shear Bands , 2002 .

[18]  Tao Tang,et al.  Boundary Layer Resolving Pseudospectral Methods for Singular Perturbation Problems , 1996, SIAM J. Sci. Comput..

[19]  Nam Mai-Duy,et al.  Solving biharmonic problems with scattered-point discretization using indirect radial-basis-function networks , 2006 .

[20]  Nam Mai-Duy,et al.  An efficient indirect RBFN‐based method for numerical solution of PDEs , 2005 .

[21]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[22]  J. W. Walter,et al.  On stress collapse in adiabatic shear bands , 1987 .

[23]  Nam Mai-Duy,et al.  Solving high order ordinary differential equations with radial basis function networks , 2005 .

[24]  N Mai Duy,et al.  APPROXIMATION OF FUNCTION AND ITS DERIVATIVES USING RADIAL BASIS FUNCTION NETWORKS , 2003 .

[25]  TRULY MESHLESS LOCAL PETROV-GALERKIN (MLPG) SOLUTIONS OF TRACTION AND DISPLACEMENT BIES , 2003 .

[26]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[27]  A meshless IRBFN-based method for transient problems , 2005 .

[28]  菊池 正紀,et al.  MLPG (Meshless Local Petrov-Galerkin)法を用いた二次元き裂問題の解析( メッシュフリー法とその周辺技術) , 2004 .

[29]  Wing Kam Liu,et al.  Numerical simulations of strain localization in inelastic solids using mesh‐free methods , 2000 .

[30]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[31]  Ted Belytschko,et al.  On the dynamics and the role of imperfections for localization in thermo-viscoplastic materials , 1994 .

[32]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[33]  Nam Mai-Duy,et al.  Solving high‐order partial differential equations with indirect radial basis function networks , 2005 .