HOSIM: A high-order stochastic simulation algorithm for generating three-dimensional complex geological patterns

Abstract The three-dimensional high-order simulation algorithm HOSIM is developed to simulate complex non-linear and non-Gaussian systems. HOSIM is an alternative to the current MP approaches and it is based upon new high-order spatial connectivity measures, termed high-order spatial cumulants. The HOSIM algorithm implements a sequential simulation process, where local conditional distributions are generated using weighted orthonormal Legendre polynomials, which in turn define the so-called Legendre cumulants. The latter are high-order conditional spatial cumulants inferred from both the available data and training images. This approach is data-driven and reconstructs both high and lower-order spatial complexity in simulated realizations, while it only borrows from training images information that is not available in the data used. However, the three-dimensional implementation of the algorithm is computationally very intensive. To address his topic, the contribution of high-order conditional spatial cumulants is assessed in this paper through the number of Legendre cumulants with respect to the order of approximation used to estimate a conditional distribution and the number of data used within the respective neighbourhood. This leads to discarding the terms of Legendre cumulants with negligible contributions and allows an efficient simulation algorithm to be developed. The current version of the HOSIM algorithm is several orders of magnitude faster than the original version of the algorithm. Application and comparisons in a controlled environment show the excellent performance and efficiency of the HOSIM algorithm.

[1]  F. Y. Edgeworth,et al.  The Law of Error , 1887, Nature.

[2]  Khalid M. Hosny,et al.  Exact Legendre moment computation for gray level images , 2007, Pattern Recognit..

[3]  M. Kendall,et al.  The advanced theory of statistics , 1945 .

[4]  Alexandre Boucher,et al.  A SGeMS code for pattern simulation of continuous and categorical variables: FILTERSIM , 2008, Comput. Geosci..

[5]  Raveendran Paramesran,et al.  An efficient method for the computation of Legendre moments , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  J. A. Vargas-Guzmán Unbiased Resource Evaluations with Kriging and Stochastic Models of Heterogeneous Rock Properties , 2008 .

[7]  Paul Switzer,et al.  Filter-Based Classification of Training Image Patterns for Spatial Simulation , 2006 .

[8]  K. Xiao,et al.  An Efficient Method for the Computation of Mixed Potential Green's Functions in Cylindrically Stratified Media , 2012 .

[9]  Max Welling,et al.  Robust Series Expansionsfor Probability Density EstimationMax WellingDept , 2022 .

[10]  E.Gaztanaga,et al.  Gravitational Evolution of the Large-Scale Probability Density Distribution: The Edgeworth&Gamma Expansions , 1999 .

[11]  Alexandre Boucher,et al.  Considering complex training images with search tree partitioning , 2009, Comput. Geosci..

[12]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[13]  R. Dimitrakopoulos,et al.  Two-dimensional Conditional Simulations Based on the Wavelet Decomposition of Training Images , 2009 .

[14]  Alexandre Boucher,et al.  Applied Geostatistics with SGeMS: A User's Guide , 2009 .

[15]  Jesús Carrera,et al.  Application of Multiple Point Geostatistics to Non-stationary Images , 2008 .

[16]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[17]  Håkon Tjelmeland,et al.  Markov Random Fields with Higher‐order Interactions , 1998 .

[18]  Haakon Tjelmeland,et al.  Directional Metropolis : Hastings Updates for Posteriors with Nonlinear Likelihoods , 2005 .

[19]  R. Olea Geostatistics for Natural Resources Evaluation By Pierre Goovaerts, Oxford University Press, Applied Geostatistics Series, 1997, 483 p., hardcover, $65 (U.S.), ISBN 0-19-511538-4 , 1999 .

[20]  L. Hu,et al.  Multiple-Point Simulations Constrained by Continuous Auxiliary Data , 2008 .

[21]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[22]  B. Harris Spectral Analysis Of Time Series , 1967 .

[23]  C. Deutsch,et al.  Geostatistics Banff 2004 , 2005 .

[24]  C. L. Nikias,et al.  Higher-order spectra analysis : a nonlinear signal processing framework , 1993 .

[25]  R. Dimitrakopoulos,et al.  High-order Stochastic Simulation of Complex Spatially Distributed Natural Phenomena , 2010 .

[26]  J. Caers,et al.  Conditional Simulation with Patterns , 2007 .

[27]  Roussos Dimitrakopoulos,et al.  High-order Statistics of Spatial Random Fields: Exploring Spatial Cumulants for Modeling Complex Non-Gaussian and Non-linear Phenomena , 2009 .

[28]  Jef Caers,et al.  Geostatistical Reservoir Modelling using Statistical Pattern Recognition , 2001 .

[29]  Eric R. Ziegel,et al.  Geostatistics for the Next Century , 1994 .

[30]  M. Rosenblatt,et al.  ASYMPTOTIC THEORY OF ESTIMATES OF kTH-ORDER SPECTRA. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Feng Zhang,et al.  A High Order Cumulants Based Multivariate Nonlinear Blind Source Separation Method , 2005, Machine Learning.

[32]  J. Caers,et al.  Stochastic Simulation of Patterns Using Distance-Based Pattern Modeling , 2010 .

[33]  Colin Daly,et al.  Higher Order Models using Entropy, Markov Random Fields and Sequential Simulation , 2005 .

[34]  Andre G. Journel,et al.  Modeling Uncertainty: Some Conceptual Thoughts , 1994 .

[35]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[36]  Roussos G. Dimitrakopoulos,et al.  A new approach for geological pattern recognition using high-order spatial cumulants , 2010, Comput. Geosci..

[37]  Jef Caers,et al.  Representing Spatial Uncertainty Using Distances and Kernels , 2009 .

[38]  F. Alabert,et al.  Non-Gaussian data expansion in the Earth Sciences , 1989 .

[39]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[41]  Georgios B. Giannakis,et al.  Cumulant‐based identification of noisy closed loop systems , 1996 .

[42]  Roussos Dimitrakopoulos,et al.  Generalized Sequential Gaussian Simulation on Group Size ν and Screen-Effect Approximations for Large Field Simulations , 2004 .

[43]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[44]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .