Variation of the Outer Circumferential Layer in the Limb Bones of Birds

Abstract. The core of the limb bone cortex of mammals and birds is made of rapidly deposited, fibro-lamellar bone tissue (also present in non-avian theropods), which is usually surrounded by an avascular outer circumferential layer (OCL) of slowly deposited parallel-fibered bone. We present the first comparative allometric study of the relative OCL thickness (expressed as a fraction of the diaphyseal radius) in modern birds. Body size explains 79% of the OCL variation in thickness, which is inversely correlated with size, that is, shows negative allometry (slope -0.799). This may explain the apparent absence of OCL in the ratites. Since the OCL is deposited at the end of growth, we propose that its relative thickness probably correlates with the amount of slow, residual growth, which our results suggest to be on the average larger in small birds.

[1]  C. Lilja,et al.  A comparative study of growth, skeletal development and eggshell composition in some species of birds , 2004 .

[2]  G. Mayr,et al.  The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters , 2003, Cladistics : the international journal of the Willi Hennig Society.

[3]  N. Myhrvold,et al.  OSTEOHISTOLOGY OF CONFUCIUSORNIS SANCTUS (THEROPODA: AVES) , 2003 .

[4]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[5]  E. de Margerie,et al.  Bone typology and growth rate: testing and quantifying 'Amprino's rule' in the mallard (Anas platyrhynchos). , 2002, Comptes rendus biologies.

[6]  A. Chinsamy,et al.  Bone histology: Evolution of growth pattern in birds , 2001, Nature.

[7]  S. Hedges,et al.  Calibration of avian molecular clocks. , 2001, Molecular biology and evolution.

[8]  A. Chinsamy,et al.  Bone microstructure of the divingHesperornisand the voltantIchthyornisfrom the Niobrara Chalk of western Kansas , 1998 .

[9]  A. Abourachid,et al.  [Expression of growth dynamic in the structure of periosteal bone in Anas platyrhynchos]. , 1996, Comptes rendus de l'Academie des sciences. Serie III, Sciences de la vie.

[10]  L. Chiappe,et al.  Mesozoic avian bone microstructure: physiological implications , 1995, Paleobiology.

[11]  Andrew Rambaut,et al.  Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data , 1995, Comput. Appl. Biosci..

[12]  Theodore Garland,et al.  Phylogenetic Analysis of Covariance by Computer Simulation , 1993 .

[13]  A. Ham,et al.  Ham's histology , 1987 .

[14]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[15]  T. A. Bookhout,et al.  Counts of Periosteal Layers Invalid for Aging Canada Geese , 1980 .

[16]  R. Soest,et al.  The layered structure of bones of birds as a possible indication of age , 1971 .

[17]  D. Enlow,et al.  A comparative histological study of fossil and recent bone tissues. Part III. , 1957 .

[18]  Maryam,et al.  Histology , 1867, The Dental register.

[19]  J. Matthias Starck,et al.  Avian growth and development : evolution within the altricial-precocial spectrum , 1998 .

[20]  A. Abourachid,et al.  Expression of growth dynamic in the structure of the periosteal bone in the mallard, Anas platyrhynchos , 1996 .

[21]  P. Koubek,et al.  Estimating the age of male Phasianus colchicus by bone histology and spur length , 1984 .

[22]  D. Pomeroy GROWTH AND PLUMAGE CHANGES OF THE GRAY CROWNED CRANE BALEARICA-REGULORUM-GIBBERICEPS , 1980 .

[23]  J. C. Lewis Periosteal Layers Do Not Indicate Ages of Sandhill Cranes , 1979 .

[24]  Donald H. Enlow,et al.  A comparative histological study of fossil and recent bone tissues , 1955 .