Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems

Local-spin-density-functional (LSDA) calculations may be affected by severe errors when applied to the study of magnetic and strongly correlated materials. Some of these faults can be traced back to the presence of the spurious self-interaction in the density functional. Since the application of a fully self-consistent self-interaction correction is highly demanding even for moderately large systems, we pursue a strategy of approximating the self-interaction-corrected potential with a nonlocal, pseudopotentiallike projector, first generated within the isolated atom and then updated during the self-consistent cycle in the crystal. This scheme, whose implementation is totally uncomplicated and particularly suited for the pseudopotental formalism, dramatically improves the LSDA results for a variety of compounds with a minimal increase of computing cost.

[1]  Svane Electronic structure of cerium in the self-interaction corrected local spin density approximation. , 1994, Physical review letters.

[2]  Jones,et al.  Total-energy differences: Sources of error in local-density approximations. , 1985, Physical review. B, Condensed matter.

[3]  P. Blaha,et al.  Electronic structure of 3d-transition-metal oxides: on-site Coulomb repulsion versus covalency , 1999 .

[4]  J. Janak,et al.  Proof that ? E /? n i =e in density-functional theory , 1978 .

[5]  M. Alouani,et al.  Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO , 2000 .

[6]  G. Gehring,et al.  Self-Interaction Free Relativistic Local Spin Density Approximation: Equivalent of Hund{close_quote}s Rules in {ital {gamma}} -Ce , 1997 .

[7]  C. Almbladh,et al.  Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. , 1985, Physical review. B, Condensed matter.

[8]  Svane Electronic structure of La2CuO4 in the self-interaction-corrected density-functional formalism. , 1992, Physical review letters.

[9]  W. Sikora,et al.  Symmetry analysis of magnetic structure in hexagonal manganites LMnO3 (L = Er, Ho, Lu, Sc, Tm, Y) , 1986 .

[10]  A. Cheetham,et al.  Magnetic ordering and exchange effects in the antiferromagnetic solid solutionsMnxNi1−xO , 1983 .

[11]  K. Terakura,et al.  Effective single-particle potentials for MnO in light of interatomic magnetic interactions: Existing theories and perspectives , 1998 .

[12]  A. Continenza,et al.  Self-energy corrections in VO 2 within a model GW scheme , 1999 .

[13]  A. Zunger,et al.  Ground- and excited-state properties of LiF in the local-density formalism , 1977 .

[14]  H. Yakel,et al.  On the crystal structure of the manganese(III) trioxides of the heavy lanthanides and yttrium , 1963 .

[15]  Determination of the magnetic structure of hexagonal manganites RMnO3 (R=Sc, Y, Ho, Er, Tm, Yb) by second-harmonic spectroscopy , 1999 .

[16]  R. Pisarev,et al.  Nonlinear Optical Spectroscopy of the Two-Order-Parameter Compound YMnO3 , 1998 .

[17]  Scheffler,et al.  Electronic and structural properties of GaN by the full-potential linear muffin-tin orbitals method: The role of the d electrons. , 1993, Physical review. B, Condensed matter.

[18]  G. Mahan,et al.  Atoms in jellium , 1978 .

[19]  J. Lægsgaard,et al.  Three-particle approximation for transition-metal oxides , 1997 .

[20]  A. Fujimori,et al.  Valence-band photoemission and optical absorption in nickel compounds , 1984 .

[21]  Karin M. Rabe,et al.  FIRST-PRINCIPLES INVESTIGATION OF FERROMAGNETISM AND FERROELECTRICITY IN BISMUTH MANGANITE , 1999 .

[22]  J. Perdew,et al.  Electron removal energies in Kohn-Sham density-functional theory , 1982 .

[23]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[24]  Nicola A. Hill,et al.  Why Are There so Few Magnetic Ferroelectrics , 2000 .

[25]  C. Thomsen,et al.  Raman spectroscopy of orthorhombic perovskitelike YMnO_{3} and LaMnO_{3} , 1998 .

[26]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[27]  Arai,et al.  Electronic structures of transition-metal mono-oxides in the self-interaction-corrected local-spin-density approximation. , 1995, Physical review. B, Condensed matter.

[28]  C. Stampfl,et al.  Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials , 2000 .

[29]  Gunnarsson,et al.  Transition-metal oxides in the self-interaction-corrected density-functional formalism. , 1990, Physical review letters.

[30]  John P. Perdew,et al.  A self-interaction corrected approach to many-electron systems: Beyond the local spin density approximation , 1980 .

[31]  Nelson,et al.  Explicit treatment of the gallium 3d electrons in GaN using the plane-wave pseudopotential method. , 1994, Physical review. B, Condensed matter.

[32]  A. Jacobson,et al.  Covalency Parameters in MnO, α‐MnS, and NiO , 1968 .

[33]  Pickett,et al.  Electronic structure and half-metallic transport in the La1-xCaxMnO3 system. , 1996, Physical review. B, Condensed matter.

[34]  Massidda,et al.  Band-structure picture for MnO reexplored: A model GW calculation. , 1995, Physical review letters.

[35]  P. Strange,et al.  Ab initio theory of valency in ytterbium compounds , 2000 .

[36]  James F. Scott,et al.  The Physics of Ferroelectric Memories , 1998 .

[37]  C. Trautmann,et al.  Swelling effects in lithium fluoride induced by swift heavy ions , 2000 .

[38]  W. Pickett Electronic structure of the high-temperature oxide superconductors , 1989 .

[39]  J. Perdew Orbital functional for exchange and correlation: self-interaction correction to the local density approximation☆ , 1979 .

[40]  T. Yoshimura,et al.  Epitaxially grown YMnO3 film: New candidate for nonvolatile memory devices , 1996 .

[41]  J. Perdew,et al.  Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .

[42]  Alex Zunger,et al.  First-principles nonlocal-pseudopotential approach in the density-functional formalism: Development and application to atoms , 1978 .

[43]  A. Filippetti,et al.  Coexistence of magnetism and ferroelectricity in perovskites , 2002 .

[44]  R. O. Jones,et al.  The density functional formalism, its applications and prospects , 1989 .

[45]  R. D. Cowan,et al.  ATOMIC SELF-CONSISTENT-FIELD CALCULATIONS USING STATISTICAL APPROXIMATIONS FOR EXCHANGE AND CORRELATION. , 1967 .

[46]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[47]  J. Lægsgaard,et al.  Theory of the α-γ phase transition in Ce , 1999 .

[48]  A. Filippetti Electron affinity in density-functional theory in the local-spin-density approximation , 1998 .

[49]  Q. Fang Theoretical treatment of the nonlinear anelastic internal friction peaks appearing in the cold-worked Al-based solid solutions , 1997 .

[50]  S. H. Lee,et al.  Growth, Ferroelectric Properties, and Phonon Modes of YMnO3 Single Crystal , 2000 .

[51]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[52]  Allan,et al.  Dielectric tensor, effective charges, and phonons in alpha -quartz by variational density-functional perturbation theory. , 1992, Physical review letters.

[53]  Krüger,et al.  Self-interaction and relaxation-corrected pseudopotentials for II-VI semiconductors. , 1996, Physical review. B, Condensed matter.

[54]  S. Massidda,et al.  Noncubic Behavior of Antiferromagnetic Transition-Metal Monoxides with the Rocksalt Structure , 1999 .

[55]  J. Chelikowsky,et al.  Electronic structure and spin polarization of MnxGa1-xN , 2002 .

[56]  Kuiper,et al.  Electronic structure of CoO, Li-doped CoO, and LiCoO2. , 1991, Physical review. B, Condensed matter.

[57]  P. Krüger,et al.  AB INITIO ELECTRONIC STRUCTURE OF SILVER HALIDES CALCULATED WITH SELF-INTERACTION AND RELAXATION-CORRECTED PSEUDOPOTENTIALS , 1998 .

[58]  M. Fiebig,et al.  Observation of coupled magnetic and electric domains , 2002, Nature.

[59]  Winter,et al.  Application of the self-interaction correction to transition-metal oxides. , 1993, Physical review. B, Condensed matter.

[60]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[61]  D. Vanderbilt,et al.  Optimally smooth norm-conserving pseudopotentials. , 1985, Physical review. B, Condensed matter.

[62]  Baldereschi,et al.  Quasiparticle energies in semiconductors: Self-energy correction to the local-density approximation. , 1989, Physical review letters.

[63]  Eliel,et al.  Sum-frequency generation with a free-electron laser: A study of gallium phosphide. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[64]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[65]  N. Hamada,et al.  Jahn-Teller distortion and magnetic structures in LaMnO{sub 3} , 1997 .

[66]  J. Allen,et al.  Magnitude and origin of the band gap in NiO , 1984 .

[67]  Alessandra Continenza,et al.  Quasiparticle energy bands of transition-metal oxides within a model GW scheme , 1997 .

[68]  R. O. Jones,et al.  Self-interaction corrections in the density functional formalism , 1981 .

[69]  A. Kityk,et al.  Infinite Lifshitz point in incommensurate type-I dielectrics , 1999 .

[70]  H. Takagi,et al.  Dielectric and magnetic anomalies and spin frustration in hexagonal R MnO 3 ( R = Y , Yb, and Lu) , 2001 .

[71]  Y. Sun,et al.  Coupling between the ferroelectric and antiferromagnetic orders in YMnO 3 , 1997 .

[72]  Z. Szotek,et al.  Electronic structure of Pu monochalcogenides and monopnictides , 2002 .

[73]  S. Hüfner,et al.  Photoemission and inverse photoemission spectroscopy of NiO , 1984 .

[74]  Peter Fulde,et al.  Electron correlations in molecules and solids , 1991 .

[75]  Kiyoyuki Terakura,et al.  Band theory of insulating transition-metal monoxides: Band-structure calculations , 1984 .

[76]  Z. Szotek,et al.  Cu valency change induced by O doping in YBCPO. , 2001, Physical review letters.