Application of model predictive control for the optimization of thermo-hygrometric comfort and energy consumption of buildings

The use of tools of simulation in every field of engineering is in the last years widely spreading. Lot of them can be used and a large amount of simulators can be found on the market in order to perform every kind of analysis and prediction. In the field of building/plant system, tools based on white, grey and black box approaches are often used as a function of accuracy and reliability. Several tools were developed according to mathematical models and transient analysis in order to perform Building Energy Simulations. The lumped capacitance models have a potential in terms of both data reliability and low computational cost. The Resistance-Capacitance models can be realized with different orders to improve the dynamic thermal behavior of building and coupled with model-based design tools. Dymola with Modelica language can provide a useful tool for engineers to design a thermohygrometric comfort model optimizing the energy consumptions. The paper describes a calculation method developed with the aid of an outdoor test cell, based on a second order Lumped parameters model coupled with a hygrometric model and a Model Predictive Control thanks to a library for real time control and management of energy consumptions and thermal comfort. RÉSUMÉ. L'utilisation d'outils de simulation dans tous les domaines de l'ingénierie s'est largement répandue ces dernières années. Beaucoup d'entre eux peuvent être utilisés et une grande quantité de simulateurs peuvent être trouvés sur le marché afin d'effectuer tout type d'analyse et de prévision. Dans le domaine des systèmes de bâtiments / installations, les outils basés sur les approches de boîte blanche, grise et noire sont souvent utilisés en fonction de la précision et de la fiabilité. 376 I2M. Volume 17 – n° 3/2018 Plusieurs outils ont été développés selon des modèles mathématiques et des analyses transitoires afin de réaliser des simulations d'énergie du bâtiment. Les modèles de capacité concentrée ont un potentiel en termes de fiabilité des données et de faible coût de calcul. Les modèles Résistance-Capacité peuvent être réalisés avec différents ordres pour améliorer le comportement thermique dynamique du bâtiment et associés à des outils de conception basés sur des modèles. Dymola avec le langage Modelica peut fournir aux ingénieurs un outil utile pour concevoir un modèle de confort thermo-hygrométrique optimisant les consommations d'énergie. L'article décrit une méthode de calcul développée à l'aide d'une cellule de test extérieure, basée sur un modèle à paramètres concentrées de second ordre associé à un modèle hygrométrique et à une commande prédictive, grâce à une bibliothèque pour le contrôle en temps réel et la gestion des consommations d'énergie et du confort thermique.

[1]  Italo Meroni,et al.  Refurbishment design through cost-optimal methodology: The case study of a social housing in the northern Italy , 2017 .

[2]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[3]  Italo Meroni,et al.  An Open Source “Smart Lamp” for the Optimization of Plant Systems and Thermal Comfort of Offices , 2016, Sensors.

[4]  Zhiqiang Zhai,et al.  Advances in building simulation and computational techniques: A review between 1987 and 2014 , 2016 .

[5]  Yi Zhang,et al.  Model-Based Control of Renewable Energy Systems in Buildings , 2006 .

[6]  Bing Dong,et al.  A real-time model predictive control for building heating and cooling systems based on the occupancy behavior pattern detection and local weather forecasting , 2013, Building Simulation.

[7]  Hilding Elmqvist,et al.  Modeling of multibody systems with the object-oriented modeling language Dymola , 1996 .

[8]  P. Riederer,et al.  MATLAB / SIMULINK FOR BUILDING AND HVAC SIMULATION-STATE OF THE ART , 2005 .

[9]  H. White A strategy for competitive, sustainable and secure energy , 2014 .

[10]  L. H. Hansen,et al.  Modelling the heat dynamics of a building using stochastic differential equations , 2000 .

[11]  Frauke Oldewurtel,et al.  Building modeling as a crucial part for building predictive control , 2013 .

[12]  Arun Kumar,et al.  A review on modeling and simulation of building energy systems , 2016 .

[13]  Jin Wen,et al.  Review of building energy modeling for control and operation , 2014 .

[14]  Italo Meroni,et al.  Energy performance assessment with empirical methods: application of energy signature , 2015 .

[15]  Martin Kozek,et al.  Ten questions concerning model predictive control for energy efficient buildings , 2016 .

[16]  Hartwig M. Künzel,et al.  Simulation of indoor temperature and humidity conditions including hygrothermal interactions with the building envelope , 2005 .

[17]  Italo Meroni,et al.  Design and Development of nEMoS, an All-in-One, Low-Cost, Web-Connected and 3D-Printed Device for Environmental Analysis , 2015, Sensors.

[18]  Karim Limam,et al.  Hygrothermal behavior modeling of the hygroscopic envelopes of buildings: A dynamic co-simulation approach , 2016 .

[19]  M. Dempsey Dymola for Multi-Engineering Modelling and Simulation , 2006, 2006 IEEE Vehicle Power and Propulsion Conference.

[20]  Marko Bacic,et al.  Model predictive control , 2003 .

[21]  Vasco Medici,et al.  Grey-box system identification of building thermal dynamics using only smart meter and air temperature data , 2015 .

[22]  Peter A. Fritzson,et al.  Principles of object-oriented modeling and simulation with Modelica 2.1 , 2004 .

[23]  Italo Meroni,et al.  A Low-Cost Environmental Monitoring System: How to Prevent Systematic Errors in the Design Phase through the Combined Use of Additive Manufacturing and Thermographic Techniques , 2016, Sensors.

[24]  Karim Limam,et al.  Effect of Coupled Heat, Air and Moisture Transfers Modeling in the Wall on the Hygrothermal Behavior of Buildings , 2015 .

[25]  Henrik Madsen,et al.  Identifying suitable models for the heat dynamics of buildings , 2011 .

[26]  Italo Meroni,et al.  An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant , 2015, Sensors.

[27]  Shi You,et al.  Challenges of implementing economic model predictive control strategy for buildings interacting with smart energy systems , 2017 .

[28]  Stefano Gagliardo,et al.  An Ontology-based Framework for Sustainable Factories , 2014 .

[29]  J. Glachant,et al.  How to Refurbish all Buildings by 2050 , 2012 .

[30]  Italo Meroni,et al.  Integration of a do it yourself Hardware in a Lighting Device for the Management of Thermal Comfort and Energy Use , 2016 .

[31]  Dominique Marchio,et al.  Development and validation of a gray box model to predict thermal behavior of occupied office buildings , 2014 .

[32]  Paul Raftery,et al.  A review of methods to match building energy simulation models to measured data , 2014 .

[34]  Steven K. Firth,et al.  Developing suitable thermal models for domestic buildings with Smart Home equipment , 2014 .

[35]  Italo Meroni,et al.  Hourly Calculation Method of Air Source Heat Pump Behavior , 2016 .

[36]  Italo Meroni,et al.  A Simplified Thermal Model to Control the Energy Fluxes and to Improve the Performance of Buildings , 2016 .

[37]  Italo Meroni,et al.  Durability of technologies in the keeping of ZEB’s performances , 2018, Energy Procedia.

[38]  Robert Sabourin,et al.  Optimization of HVAC Control System Strategy Using Two-Objective Genetic Algorithm , 2005 .

[39]  Hubertus Tummescheit,et al.  Design and Implementation of Object-Oriented Model Libraries using Modelica , 2002 .

[40]  Sousso Kelouwani,et al.  Comparison and Simulation of Building Thermal Models for Effective Energy Management , 2015 .

[41]  Dirk Müller,et al.  A Modelica library for the agent-based control of building energy systems , 2017 .

[42]  Italo Meroni,et al.  Assessment of the Performance of a Ventilated Window Coupled with a Heat Recovery Unit through the Co-Heating Test , 2016 .

[43]  Stefano Gagliardo,et al.  A Semantic Framework for Sustainable Factories , 2014 .