A global Torelli theorem for hyperkaehler manifolds (after Verbitsky)

Compact hyperkaehler manifolds are higher-dimensional generalizations of K3 surfaces. The classical Global Torelli theorem for K3 surfaces, however, does not hold in higher dimensions. More precisely, a compact hyperkaehler manifold is in general not determined by its natural weight-two Hodge structure. The text gives an account of a recent theorem of M. Verbitsky, which can be regarded as a weaker version of the Global Torelli theorem phrased in terms of the injectivity of the period map on the connected components of the moduli space of marked manifolds.

[1]  G. Valery,et al.  Moduli of K3 Surfaces and Irreducible Symplectic Manifolds , 2013 .

[2]  E. Markman A survey of Torelli and monodromy results for holomorphic-symplectic varieties , 2011, 1101.4606.

[3]  E. Markman INTEGRAL CONSTRAINTS ON THE MONODROMY GROUP OF THE HYPERKÄHLER RESOLUTION OF A SYMMETRIC PRODUCT OF A K3 SURFACE , 2006, math/0601304.

[4]  M. Verbitsky A global Torelli theorem for hyperkahler manifolds , 2009, 0908.4121.

[5]  O. Debarre Classes de cohomologie positives dans les variétés kählériennes compactes , 2004 .

[6]  D. Huybrechts The Kähler cone of a compact hyperkähler manifold , 2003 .

[7]  E. Markman On the monodromy of moduli spaces of sheaves on K3 surfaces II , 2003, math/0305042.

[8]  D. Huybrechts,et al.  Compact Hyperkähler Manifolds: Basic Results , 2022 .

[9]  Y. Namikawa Counter-example to global Torelli problem for irreducible symplectic manifolds , 2001, math/0110114.

[10]  Mihai Păun,et al.  Numerical characterization of the Kahler cone of a compact Kahler manifold , 2001 .

[11]  K. O’Grady A new six-dimensional irreducible symplectic variety , 2000, math/0010187.

[12]  K. Yoshioka Moduli spaces of stable sheaves on abelian surfaces , 2000, math/0009001.

[13]  K. O’Grady Desingularized moduli spaces of sheaves on a K3, I , 1997, alg-geom/9708009.

[14]  O. Debarre Un contre-exemple au théorème de Torelli pour les variétés symplectiques irréductibles , 1984 .

[15]  A. Beauville,et al.  Variétés Kähleriennes dont la première classe de Chern est nulle , 1983 .

[16]  Felix E. Browder,et al.  Covering spaces, fibre spaces, and local homeomorphisms , 1954 .