Composition of Cryptographic Protocols in a Probabilistic Polynomial-Time Process Calculus

We describe a probabilistic polynomial-time process calculus for analyzing cryptographic protocols and use it to derive compositionality properties of protocols in the presence of computationally bounded adversaries. We illustrate these concepts on oblivious transfer, an example from cryptography. We also compare our approach with a framework based on interactive Turing machines.

[1]  Oded Goldreich,et al.  A randomized protocol for signing contracts , 1985, CACM.

[2]  Roger M. Needham,et al.  Using encryption for authentication in large networks of computers , 1978, CACM.

[3]  Birgit Pfitzmann,et al.  Deriving Cryptographically Sound Implementations Using Composition and Formally Verified Bisimulation , 2002, FME.

[4]  Taher ElGamal,et al.  A public key cyryptosystem and signature scheme based on discrete logarithms , 1985 .

[5]  Oded Goldreich,et al.  Foundations of Cryptography: List of Figures , 2001 .

[6]  António Pacheco,et al.  Probabilistic Situation Calculus , 2001, Annals of Mathematics and Artificial Intelligence.

[7]  Birgit Pfitzmann,et al.  Composition and integrity preservation of secure reactive systems , 2000, CCS.

[8]  Yehuda Lindell,et al.  Universally composable two-party and multi-party secure computation , 2002, STOC '02.

[9]  A. W. Roscoe Modelling and verifying key-exchange protocols using CSP and FDR , 1995, Proceedings The Eighth IEEE Computer Security Foundations Workshop.

[10]  Michael O. Rabin,et al.  How To Exchange Secrets with Oblivious Transfer , 2005, IACR Cryptol. ePrint Arch..

[11]  Birgit Pfitzmann,et al.  Cryptographic Security of Reactive Systems Extended Abstract , 2000 .

[12]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[13]  Andrew Chi-Chih Yao,et al.  Theory and Applications of Trapdoor Functions (Extended Abstract) , 1982, FOCS.

[14]  John C. Mitchell,et al.  A probabilistic poly-time framework for protocol analysis , 1998, CCS '98.

[15]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[16]  John C. Mitchell,et al.  A Probabilistic Polynomial-time Calculus For Analysis of Cryptographic Protocols (Preliminary Report) , 2001, MFPS.

[17]  Birgit Pfitzmann,et al.  A Universally Composable Cryptographic Library , 2003, IACR Cryptol. ePrint Arch..

[18]  Hugo Krawczyk,et al.  Analysis of Key-Exchange Protocols and Their Use for Building Secure Channels , 2001, EUROCRYPT.

[19]  Danny Dolev,et al.  On the security of public key protocols , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[20]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[21]  John C. Mitchell,et al.  A linguistic characterization of bounded oracle computation and probabilistic polynomial time , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[22]  Birgit Pfitzmann,et al.  A composable cryptographic library with nested operations , 2003, CCS '03.

[23]  Joan Feigenbaum,et al.  Advances in Cryptology-Crypto 91 , 1992 .

[24]  Leonid A. Levin,et al.  Fair Computation of General Functions in Presence of Immoral Majority , 1990, CRYPTO.

[25]  Paula Severi Type Inference for Pure Type Systems , 1998, Inf. Comput..

[26]  John C. Mitchell,et al.  Probabilistic Polynomial-Time Equivalence and Security Analysis , 1999, World Congress on Formal Methods.

[27]  Oded Goldreich,et al.  Foundations of Cryptography: Basic Tools , 2000 .

[28]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[29]  Martín Abadi,et al.  Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption)* , 2001, Journal of Cryptology.

[30]  Steve A. Schneider Security properties and CSP , 1996, Proceedings 1996 IEEE Symposium on Security and Privacy.

[31]  S. Anderson,et al.  Secure Synthesis of Code: A Process Improvement Experiment , 1999, World Congress on Formal Methods.

[32]  Oded Goldreich Foundations of Cryptography: Index , 2001 .

[33]  Martín Abadi,et al.  A Calculus for Cryptographic Protocols: The spi Calculus , 1999, Inf. Comput..

[34]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[35]  Donald Beaver,et al.  Foundations of Secure Interactive Computing , 1991, CRYPTO.

[36]  Donald Beaver,et al.  Secure multiparty protocols and zero-knowledge proof systems tolerating a faulty minority , 2004, Journal of Cryptology.