The theory of Cantorian spacetime and high energy particle physics (an informal review)

Abstract The paper gives a rather detailed introduction and up to date review of the main concepts and ideas upon which the theory of fractal-Cantorian spacetime is based.

[1]  M. E. Naschie Montonen-Olive Duality and the Mass Spectrum of Elementary Particles via E-Infinity , 2008 .

[2]  M. Naschie Dimensional symmetry breaking, information and the arrow of time in cantorian space , 1997 .

[3]  L. Nottale Fractal space-time and microphysics , 1993 .

[4]  R. Munroe Symplectic tiling, hypercolour and hyperflavor E12 , 2009 .

[5]  M. E. Naschie Towards a quantum field theory without Gribov copies and similar problems , 2008 .

[6]  M. E. Naschie Deriving the curvature of fractal-Cantorian spacetime from first principles , 2009 .

[7]  L. Marek-Crnjac A short history of fractal-Cantorian space-time , 2009 .

[8]  Franco Selleri,et al.  Frontiers of Fundamental Physics , 1984 .

[9]  M. E. Naschie BPS states, dualities and determining the mass of elementary particles , 2009 .

[10]  Peter Weibel,et al.  Space Time Physics and Fractality , 2005 .

[11]  I. Prigogine,et al.  Quantum mechanics, diffusion and chaotic fractals , 1995 .

[12]  M. E. Naschie,et al.  Elementary prerequisites for E-infinity . (Recommended background readings in nonlinear dynamics, geometry and topology) , 2006 .

[13]  M. E. Naschie,et al.  Fuzzy multi-instanton knots in the fabric of space–time and Dirac’s vacuum fluctuation , 2008 .

[14]  M. E. Naschie,et al.  Yang–Mills instanton via exceptional Lie symmetry groups and E-infinity , 2008 .

[15]  M. Elnaschie From classical gauge theory back to Weyl scaling via E-Infinity spacetime , 2008 .

[16]  M. E. Naschie The internal dynamics of the exceptional Lie symmetry groups hierarchy and the coupling constants of unification , 2008 .

[17]  M. E. Naschie Eliminating gauge anomalies via a “point-less” fractal Yang–Mills theory , 2008 .

[18]  Hans Walser The Golden Section , 2001 .

[19]  M. E. Naschie Anomalies free E-infinity from von Neumann’s continuous geometry , 2008 .

[20]  B. Sidharth The Universe of Fluctuations: The Architecture of Spacetime and the Universe , 2005 .

[21]  H. Sagan Space-filling curves , 1994 .

[22]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[23]  M. Crasmareanu,et al.  Golden differential geometry , 2008 .

[24]  Rudy Rucker,et al.  Infinity and the Mind , 1982 .

[25]  S. Olsen The Golden Section: Nature's Greatest Secret , 2006 .

[26]  Elizabeth D. Russell,et al.  Infinity and the Mind , 2008 .

[27]  M. Naschie Average exceptional Lie and Coxeter group hierarchies with special reference to the standard model of high energy particle physics , 2008 .

[28]  M. E. Naschie,et al.  TOPOLOGICAL DEFECTS IN THE SYMPLICTIC VACUUM, ANOMALOUS POSITRON PRODUCTION AND THE GRAVITATIONAL INSTANTON , 2004 .

[29]  J. Schwarz,et al.  String theory and M-theory , 2007 .

[30]  M. S. El Naschie,et al.  On turbulence and complex dynamic in a four-dimensional Peano-Hilbert space , 1993 .

[31]  M. E. Naschie,et al.  On the uncertainty of Cantorian geometry and the two-slit experiment , 1998 .

[32]  L. Ryder,et al.  Quantum Field Theory , 2001, Foundations of Modern Physics.

[33]  M. E. Naschie The crystallographic space groups and Heterotic string theory , 2009 .

[34]  Elnaschie A REVIEW OF E INFINITY THEORY AND THE MASS SPECTRUM OF HIGH ENERGY PARTICLE PHYSICS , 2004 .

[35]  Susie Vrobel Fractal Time , 2004 .

[36]  M. Naschie An irreducibly simple derivation of the Hausdorff dimension of spacetime , 2009 .

[37]  Craig Callender,et al.  Physics Meets Philosophy at the Planck Scale , 2001 .

[38]  M. E. Naschie P-Adic unification of the fundamental forces and the standard model , 2008 .

[39]  M. E. Naschie Quasi exceptional E12 Lie symmetry group with 685 dimensions, KAC-Moody algebra and E-infinity Cantorian spacetime , 2008 .

[40]  M. Elnaschie The Feynman Path Integral and Ε-Infinity from the Two-slit Gedanken Experiment , 2005 .

[41]  Gerard 't Hooft In Search of the Ultimate Building Blocks , 1996 .

[42]  Jerzy Jurkiewicz,et al.  The self-organizing quantum universe. , 2008, Scientific American.

[43]  M. Naschie Superstrings, Knots, and Noncommutative Geometry in \(E^{{\text{(}}\infty {\text{)}}} \) Space , 1998 .

[44]  Hartmut Jürgens,et al.  Chaos and Fractals: New Frontiers of Science , 1992 .