A Combined Study of New Escape Time Fractal for Sine and Inverse Tangent Functions
暂无分享,去创建一个
[1] G. Julia. Mémoire sur l'itération des fonctions rationnelles , 1918 .
[2] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[3] Robert L. Devaney,et al. Dynamics of exp (z) , 1984, Ergodic Theory and Dynamical Systems.
[4] Walter Bergweiler,et al. Iteration of entire functions , 2014 .
[5] S. Ishikawa. Fixed points by a new iteration method , 1974 .
[6] Ashish Negi,et al. Non Linear Dynamics of Ishikawa Iteration , 2010 .
[7] Ashish Negi,et al. Ishikawa Iterates for Logarithmic Function , 2011 .
[8] Dierk Schleicher,et al. Escaping Points of Exponential Maps , 2003 .
[9] A. Klebanoff. π IN THE MANDELBROT SET , 2001 .
[10] Walter Bergweiler,et al. Dynamics of a higher dimensional analog of the trigonometric functions , 2010 .
[11] Ashish Negi,et al. A Study of New Fractals Complex Dynamics for Inverse and Logarithmic Functions , 2012 .
[12] Ashish Negi,et al. Complex and Inverse Complex Dynamics of Fractals using Ishikawa Iteration , 2012 .
[13] Yashwant S Chauhan,et al. Escape Time Fractals of Inverse Tangent Function , 2013 .
[14] Ashish Negi,et al. GENERATION OF NEW FRACTALS FOR SINE FUNCTION , 2011 .
[15] Ashish Negi,et al. New Julia Sets of Ishikawa Iterates , 2010 .
[16] Robert L. Devaney,et al. Dynamics of entire functions near the essential singularity , 1986, Ergodic Theory and Dynamical Systems.
[17] M. Bernhard. Introduction to Chaotic Dynamical Systems , 1992 .
[18] Walter Bergweiler,et al. Iteration of meromorphic functions , 1993, math/9310226.
[19] Ashish Negi,et al. A Relative Superior Julia Set and Relative Superior Tricorn and Multicorns of Fractals , 2012 .