Sequential Estimation Functions in Stochastic Population Processes

Sequential, i.e., randomly stopped estimation functions in a class of continuous time stochastic population models are considered. The class includes finite, irreducible Markov processes. Three types of efficient sequential estimation functions are discussed and their asymptotic behaviour is investigated. The main tools of analysis are taken from point process theory.

[1]  Do Sun Bai Efficient Estimation of Transition Probabilities in a Markov Chain , 1975 .

[2]  P. Varaiya,et al.  Martingales on Jump Processes. I: Representation Results , 1975 .

[3]  Optimal Sequential Estimation for Ergodic Birth‐Death Processes , 1984 .

[4]  P. Brémaud Point Processes and Queues , 1981 .

[5]  J. Azema,et al.  Mesure invariante sur les classes récurrentes des processus de Markov , 1967 .

[6]  S. Trybuła Sequential estimation in finite-state Markov processes , 1982 .

[7]  J. Franz Sequential estimation and asymptotic properties in birth-and-death processes , 1982 .

[8]  V. Stefanov Efficient sequential estimation in exponential-type processes , 1986 .

[9]  M. Sørensen,et al.  On sequential maximum likelihood estimation for exponential families of stochastic processes , 1986 .

[10]  D. Bai,et al.  Efficient sequential estimation in a markov branching process with immigration , 1986 .

[11]  V. Stefanov Efficient sequential estimation in finite-state Markov processes , 1984 .

[12]  Martin Jacobsen Statistical Analysis of Counting Processes , 1982 .

[13]  D. Lépingle Sur le comportement asymptotique des martingales locales , 1978 .

[14]  van E.A. Doorn Conditions for exponential ergodicity and bounds for the Deacy parameters of a birth-death process , 1982 .

[15]  R. Gill Censoring and stochastic integrals , 1980 .

[16]  M. Dwass Poisson process and distribution-free statistics , 1974, Advances in Applied Probability.

[17]  H. Pruscha PARAMETRIC INFERENCE IN MARKOV BRANCHING PROCESSES WITH TIME-DEPENDENT RANDOM IMMIGRATION RATE , 1985 .

[18]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[19]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[20]  S. Adke,et al.  Sequential estimation for continuous time finite markov processes , 1984 .

[21]  N. Becker,et al.  REMARKS ON OPTIMAL INFERENCE FOR MARKOV BRANCHING PROCESSES: A SEQUENTIAL APPROACH , 1983 .

[22]  Yu. M. Kabanov,et al.  Criteria of absolute continuity of measures corresponding to multivariate point processes , 1976 .

[23]  S. Trybuła Sequential estimation in processes with independent increments , 1968 .