Multidimensional mechanics: Performance mapping of natural biological systems using permutated radar charts

Comparing the functional performance of biological systems often requires comparing multiple mechanical properties. Such analyses, however, are commonly presented using orthogonal plots that compare N ≤ 3 properties. Here, we develop a multidimensional visualization strategy using permutated radar charts (radial, multi-axis plots) to compare the relative performance distributions of mechanical systems on a single graphic across N ≥ 3 properties. Leveraging the fact that radar charts plot data in the form of closed polygonal profiles, we use shape descriptors for quantitative comparisons. We identify mechanical property-function correlations distinctive to rigid, flexible, and damage-tolerant biological materials in the form of structural ties, beams, shells, and foams. We also show that the microstructures of dentin, bone, tendon, skin, and cartilage dictate their tensile performance, exhibiting a trade-off between stiffness and extensibility. Lastly, we compare the feeding versus singing performance of Darwin’s finches to demonstrate the potential of radar charts for multidimensional comparisons beyond mechanics of materials.

[1]  Michael F. Ashby,et al.  On the mechanics of balsa and other woods , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[2]  D Vashishth,et al.  Damage mechanisms and failure modes of cortical bone under components of physiological loading , 2005, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[3]  M. Ashby MULTI-OBJECTIVE OPTIMIZATION IN MATERIAL DESIGN AND SELECTION , 2000 .

[4]  Jia-Guu Leu Computing a shape's moments from its boundary , 1991, Pattern Recognit..

[5]  O Shoval,et al.  Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of Phenotype Space , 2012, Science.

[6]  H. Espinosa,et al.  Hierarchical structure and compressive deformation mechanisms of bighorn sheep (Ovis canadensis) horn. , 2017, Acta biomaterialia.

[7]  Peter Fratzl,et al.  Collagen : structure and mechanics , 2008 .

[8]  P. Aerts,et al.  Is Beak Morphology in Darwin’s Finches Tuned to Loading Demands? , 2015, PloS one.

[9]  J. Weaver,et al.  Materials science and architecture , 2017 .

[10]  A. Ohkawara [Structure and function of the skin]. , 1983, Iyo denshi to seitai kogaku. Japanese journal of medical electronics and biological engineering.

[11]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[12]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[13]  M. Horstemeyer,et al.  A mechanistic study for strain rate sensitivity of rabbit patellar tendon. , 2010, Journal of biomechanics.

[14]  Guojun Lu,et al.  Review of shape representation and description techniques , 2004, Pattern Recognit..

[15]  Elliot P. Douglas,et al.  Bone structure and formation: A new perspective , 2007 .

[16]  J. Podos Correlated evolution of morphology and vocal signal structure in Darwin's finches , 2001, Nature.

[17]  J. Flusser,et al.  Moments and Moment Invariants in Pattern Recognition , 2009 .

[18]  Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions , 2013, 1305.1985.

[19]  R. Ritchie,et al.  Bioinspired structural materials. , 2014, Nature Materials.

[20]  Tran Van Long A new metric on parallel coordinates and its application for high-dimensional data visualization , 2015, 2015 International Conference on Advanced Technologies for Communications (ATC).

[21]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[22]  H. Wagner,et al.  The turtle carapace as an optimized multi-scale biological composite armor - A review. , 2017, Journal of the mechanical behavior of biomedical materials.

[23]  Sabine Tebbich,et al.  The ecology of tool-use in the woodpecker finch (Cactospiza pallida) , 2002 .

[24]  Andrew P. Hendry,et al.  Force–velocity trade‐off in Darwin's finch jaw function: a biomechanical basis for ecological speciation? , 2009 .

[25]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[26]  Bang Wong Points of view: Design of data figures , 2010, Nature Methods.

[27]  Matthew O. Ward,et al.  Mapping Nominal Values to Numbers for Effective Visualization , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[28]  E Novitskaya,et al.  Elastic moduli of untreated, demineralized and deproteinized cortical bone: validation of a theoretical model of bone as an interpenetrating composite material. , 2012, Acta biomaterialia.

[29]  John A. Chamberlain,et al.  Mechanical properties of coral skeleton: compressive strength and its adaptive significance , 1978, Paleobiology.

[30]  Valerio Pascucci,et al.  Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.

[31]  J. Gosline,et al.  The mechanical design of spider silks: from fibroin sequence to mechanical function. , 1999, The Journal of experimental biology.

[32]  Jarke J. van Wijk,et al.  Flexible Linked Axes for Multivariate Data Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[33]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[34]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[35]  S. J. Arnold,et al.  THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS , 1983, Evolution; international journal of organic evolution.

[36]  Michael Kjaer,et al.  Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. , 2004, Physiological reviews.

[37]  M. Meyers,et al.  The materials science of collagen. , 2015, Journal of the mechanical behavior of biomedical materials.

[38]  Roger D Feldman Filled Radar Charts Should not be Used to Compare Social Indicators , 2013 .

[39]  E. Olevsky,et al.  Energy absorbent natural materials and bioinspired design strategies: A review , 2010 .

[40]  Steve Weiner,et al.  THE MATERIAL BONE: Structure-Mechanical Function Relations , 1998 .

[41]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[42]  David Cebon,et al.  Materials Selection in Mechanical Design , 1992 .

[43]  Daniel A. Keim,et al.  Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.

[44]  Dirk J. Lehmann,et al.  General Projective Maps for Multidimensional Data Projection , 2016, Comput. Graph. Forum.

[45]  G. Marshall,et al.  The mechanical properties of human dentin: a critical review and re-evaluation of the dental literature. , 2003, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[46]  R J Full,et al.  How animals move: an integrative view. , 2000, Science.

[47]  D H ELLIOTT,et al.  STRUCTURE AND FUNCTION OF MAMMALIAN TENDON , 1965, Biological reviews of the Cambridge Philosophical Society.

[48]  D. Kisailus,et al.  Biomimetic Structural Materials: Inspiration from Design and Assembly. , 2018, Annual review of physical chemistry.

[49]  X. Lu,et al.  Biomechanical properties of murine TMJ articular disc and condyle cartilage via AFM-nanoindentation. , 2017, Journal of biomechanics.

[50]  Van C. Mow,et al.  The Biomechanical Function of the Collagen Fibril Ultrastructure of Articular Cartilage , 1978 .

[51]  A. Boskey,et al.  Dentin: structure, composition and mineralization. , 2011, Frontiers in bioscience.

[52]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[53]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[54]  Sheizaf Rafaeli,et al.  Off the Radar: Comparative Evaluation of Radial Visualization Solutions for Composite Indicators , 2016, IEEE Transactions on Visualization and Computer Graphics.

[55]  Michael F. Ashby,et al.  The mechanical efficiency of natural materials , 2004 .

[56]  R. Levine Addressing the Challenge of Molecular Change: An Interim Report. , 2018, Annual review of physical chemistry.

[57]  M. Meyers,et al.  Structural Design Elements in Biological Materials: Application to Bioinspiration , 2015, Advanced materials.

[58]  Marcus A. Magnor,et al.  Improving the visual analysis of high-dimensional datasets using quality measures , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[59]  Wen Yang,et al.  On the tear resistance of skin , 2015, Nature Communications.

[60]  Stefan Bruckner,et al.  Visual Parameter Space Analysis: A Conceptual Framework , 2014, IEEE Transactions on Visualization and Computer Graphics.

[61]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[62]  Richard F. Riesenfeld,et al.  A Survey of Radial Methods for Information Visualization , 2009, IEEE Transactions on Visualization and Computer Graphics.

[63]  David Tilman,et al.  Several scales of biodiversity affect ecosystem multifunctionality , 2013, Proceedings of the National Academy of Sciences.

[64]  Fang Li,et al.  Visualization classification method of multi-dimensional data based on radar chart mapping , 2008, 2008 International Conference on Machine Learning and Cybernetics.

[65]  C. D. Hulsey,et al.  Many-to-One Mapping of Form to Function: A General Principle in Organismal Design?1 , 2005, Integrative and comparative biology.

[66]  P. Aerts,et al.  Adaptation and function of the bills of Darwin's finches: divergence by feeding type and sex , 2010 .

[67]  Georges G. Grinstein,et al.  DNA visual and analytic data mining , 1997 .

[68]  M. Brenner,et al.  Scaling and shear transformations capture beak shape variation in Darwin’s finches , 2010, Proceedings of the National Academy of Sciences.

[69]  Scott A. Rodeo,et al.  The Basic Science of Articular Cartilage , 2009, Sports health.

[70]  Kaisa Miettinen,et al.  Survey of methods to visualize alternatives in multiple criteria decision making problems , 2012, OR Spectrum.

[71]  Eser Kandogan Star Coordinates: A Multi-dimensional Visualization Technique with Uniform Treatment of Dimensions , 2000 .

[72]  Reza Rabiei,et al.  Toughness amplification in natural composites , 2011 .

[73]  Bang Wong,et al.  Points of view: Visualizing biological data , 2012, Nature Methods.

[74]  Alberto Sánchez,et al.  A comparative study between RadViz and Star Coordinates , 2016, IEEE Transactions on Visualization and Computer Graphics.

[75]  Erica S. Savig,et al.  Points of view: Multidimensional data , 2013, Nature Methods.

[76]  Tarah N. Sullivan,et al.  Extreme lightweight structures: avian feathers and bones , 2017 .

[77]  M. Meyers,et al.  Structural Biological Materials: Critical Mechanics-Materials Connections , 2013, Science.

[78]  K Ghavami,et al.  Mechanical properties of functionally graded hierarchical bamboo structures. , 2011, Acta biomaterialia.

[79]  J. IIVARINENHelsinki Efficiency of Simple Shape Descriptors , 1997 .