Indirect and Semi-Direct Aerosol Campaign (ISDAC)

Steven Ghan, John Hubbe, and Connor Flynn, Pacific Northwest National Laboratory Greg McFarquhar, University of Illinois Ann Fridlind, NASA Goddard Institute for Space Studies Tim Garrett, University of Utah Hans Verlinde, The Pennsylvania State University Mike Poellot, University of North Dakota John Hallett, Desert Research Institute Greg Kok, Droplet Measurement Technologies Sarah Brooks and Don Collins, Texas A&M University Dan Lubin, Scripps Institution of Oceanography Matthew Shupe, CIRES, University Colorado Shaocheng Xie, Lawrence Livermore National Laboratory David Turner, University of Wisconsin David Mitchell, Desert Research Institute

[1]  J. Hudson,et al.  Coupling aerosol size distributions and size-resolved hygroscopicity to predict humidity-dependent optical properties and cloud condensation nuclei spectra , 2006 .

[2]  S. Matrosov,et al.  Profiling cloud ice mass and particle characteristic size from Doppler radar measurements , 2002 .

[3]  G. McFarquhar,et al.  A case study of horizontal variability in arctic cloud microphysical properties , 2006 .

[4]  G. McFarquhar,et al.  Assessing Current Parameterization of Mixed-Phase Clouds using In Situ Profiles Measured During the Mixed Phase Cloud Experiment , 2005 .

[5]  Alexander Smirnov,et al.  Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements , 2000 .

[6]  S. Ghan,et al.  Use of In Situ Data to Test a Raman Lidar Based Cloud Condensation Nuclei Remote Sensing Method , 2004 .

[7]  A. Goetz,et al.  Observations of the Spectral Distribution of Solar Irradiance at the Ground During SUCCESS , 1998 .

[8]  Alexei Korolev,et al.  NOTES AND CORRESPONDENCE Airspeed Corrections for Optical Array Probe Sample Volumes , 1997 .

[9]  Ilan Koren,et al.  Measurement of the Effect of Amazon Smoke on Inhibition of Cloud Formation , 2004, Science.

[10]  Peter V. Hobbs,et al.  Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations , 2001 .

[11]  J. Hudson,et al.  Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean , 2001 .

[12]  Ellsworth J. Welton,et al.  Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars , 2002 .

[13]  L. Barrie,et al.  Sources of aerosol sulphate at Alert: Apportionment using stable isotopes , 1999 .

[14]  R. Hoff,et al.  Some Physical and Chemical Properties of the Arctic Winter Aerosol in Northeastern Canada , 1984 .

[15]  Yasunobu Iwasaka,et al.  Mixing states of individual aerosol particles in spring Arctic troposphere during ASTAR 2000 campaign , 2003 .

[16]  P. Hobbs,et al.  Cloud condensation nuclei over the Arctic Ocean in early spring , 1995 .

[17]  P. Field,et al.  Ice nucleation characteristics of an isolated wave cloud , 2002 .

[18]  K. Beard,et al.  Ice initiation in warm-base convective clouds: An assessment of microphysical mechanisms , 1992 .

[19]  A. Korolev,et al.  Assessing Cloud-Phase Conditions , 2001 .

[20]  W. Sturges,et al.  Dimethyl sulfide in the Arctic atmosphere , 1995 .

[21]  M. Poellot,et al.  A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds , 2001 .

[22]  Patrick Minnis,et al.  The Mixed-Phase Arctic Cloud Experiment. , 2007 .

[23]  D. Wylie,et al.  Effects of long-range transport and clouds on cloud condensation nuclei in the springtime Arctic , 2002 .

[24]  V. Ramanathan,et al.  Reduction of tropical cloudiness by soot , 2000, Science.

[25]  George A. Isaac,et al.  Ice particle habits in Arctic clouds , 1999 .

[26]  R. Borys Studies of ice nucleation by Arctic aerosol on AGASP-II , 1989 .

[27]  R. Lawson,et al.  In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds , 2006 .

[28]  D. Mitchell PASSIVE THERMAL RETRIEVALS OF ICE AND LIQUID WATER PATH, EFFECTIVE SIZE AND OPTICAL DEPTH and their dependence on particle and size distribution shape , 2006 .

[29]  J. Seinfeld,et al.  Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei , 2004, Science.

[30]  Sergey Y. Matrosov,et al.  Arctic Cloud Microphysics Retrievals from Surface-Based Remote Sensors at SHEBA , 2005 .

[31]  David D. Turner,et al.  Arctic Mixed-Phase Cloud Properties from AERI Lidar Observations: Algorithm and Results from SHEBA , 2005 .

[32]  S. Klein,et al.  Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment , 2006 .

[33]  J. Rosinski,et al.  Cloud condensation nuclei as a source of ice-forming nuclei in clouds , 1991 .

[34]  S. Gassó,et al.  Aerosol measurements in the Arctic relevant to direct and indirect radiative forcing , 1996 .

[35]  M. Shupe,et al.  Arctic Mixed-Phase Cloud Properties Derived from Surface-Based Sensors at SHEBA , 2006 .

[36]  S. Kreidenweis,et al.  Continuous Flow Ice Thermal Diffusion Chamber Measurements of Ice Nuclei in the Arctic , 2006 .

[37]  E. Clothiaux,et al.  Objective Determination of Cloud Heights and Radar Reflectivities Using a Combination of Active Remote Sensors at the ARM CART Sites , 2000 .

[38]  R. D'Entremont,et al.  MULTISPECTRAL THERMAL RETRIEVALS OF SIZE DISTRIBUTION SHAPE , EFFECTIVE SIZE , ICE WATER PATH , OPTICAL DEPTH AND PHOTON TUNNELING CONTRIBUTION , 2002 .

[39]  C. Fairall,et al.  Measurement of Stratus Cloud and Drizzle Parameters in ASTEX with a K , 1995 .

[40]  U. Lohmann,et al.  The cloud albedo-cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE , 2002 .

[41]  L. Barrie,et al.  Arctic air pollution: An overview of current knowledge , 1986 .

[42]  P. Hobbs,et al.  Microstructures of low and middle‐level clouds over the Beaufort Sea , 1998 .

[43]  R. Ferrare,et al.  Application of aerosol hygroscopicity measured at the Atmospheric Radiation Measurement Program's Southern Great Plains site to examine composition and evolution , 2006 .

[44]  Sergey Y. Matrosov,et al.  Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters , 1999 .

[45]  J. Seinfeld,et al.  Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL‐FACE and CSTRIPE , 2005 .

[46]  Peter Pilewskie,et al.  Microphysical and radiative properties of boundary layer stratiform clouds deduced from ground‐based measurements , 1997 .

[47]  S. Kreidenweis,et al.  Airborne measurements of tropospheric ice‐nucleating aerosol particles in the Arctic spring , 2001 .

[48]  I. Gultepe,et al.  Dynamical and Microphysical Characteristics of Arctic Clouds during BASE , 2000 .

[49]  A. Korolev,et al.  Microphysical characterization of mixed‐phase clouds , 2003 .

[50]  E. Keith Bigg,et al.  Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer , 2005 .

[51]  Judith A. Curry,et al.  Overview of Arctic Cloud and Radiation Characteristics , 1996 .

[52]  M. Shupe,et al.  Analysis of Integrated Cloud Liquid and Precipitable Water Vapor Retrievals from the ARM Microwave Radiometer During SHEBA , 2001 .

[53]  P. Tans,et al.  Correlations among combustion effluent species at Barrow, Alaska: Aerosol black carbon, carbon dioxide, and methane , 1989 .

[54]  Glenn E. Shaw,et al.  Atmospheric Turbidity in the Polar Regions. , 1982 .

[55]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[56]  Chuanfeng Zhao,et al.  Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes , 2006, Nature.

[57]  B. Vonnegut,et al.  Aircraft-Produced Ice Particles (APIPs): Additional Results and Further Insights , 2003 .

[58]  C. Flynn,et al.  Use of in situ cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a method for retrieving cloud condensation nuclei profiles from surface measurements , 2006 .

[59]  A. Polissar,et al.  Airborne aerosol and black carbon measurements over the East Siberian Sea, Spring 1992 , 1997 .

[60]  G. Mace,et al.  Effects of varying aerosol regimes on low‐level Arctic stratus , 2004 .

[61]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[62]  David N. Whiteman,et al.  Studying Altocumulus with Ice Virga Using Ground-Based Active and Passive Remote Sensors , 2004 .

[63]  H. Gerber,et al.  Nephelometer Measurements of the Asymmetry Parameter, Volume Extinction Coefficient, and Backscatter Ratio in Arctic Clouds , 2000 .

[64]  D. Lubin,et al.  A climatologically significant aerosol longwave indirect effect in the Arctic , 2006, Nature.

[65]  M. Andreae,et al.  Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol Particles , 2006, Science.

[66]  G. Shaw Chemical air mass systems in Alaska , 1988 .

[67]  Glenn E. Shaw,et al.  A 3‐year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska , 2002 .

[68]  William L. Smith,et al.  A Methodology for Measuring Cirrus Cloud Visible-to-Infrared Spectral Optical Depth Ratios , 1999 .

[69]  Greg Michael McFarquhar,et al.  The impact of controversial small ice crystals on GCM simulations , 2006 .

[70]  Timothy J. Garrett,et al.  Aerosol Effects on Cloud Emissivity and Surface Longwave Heating in the Arctic , 2002 .

[71]  Brad Baker,et al.  An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE , 2001 .

[72]  I. Gultepe,et al.  The Relationship Between Cloud Droplet and Aerosol Number Concentrations for Climate Models , 1996 .