A statistical method for global optimization

An algorithm for finding global optima using statistical prediction is presented. Assuming a random function model, lower confidence bounds on predicted values are used for sequential selection of evaluation points and as a convergence criterion. Comparison with published results for several test functions indicates that the procedure is very efficient in finding the global optimum of a multimodal function, and in terminating with relatively few evaluations.<<ETX>>

[1]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[2]  F. H. Branin Widely convergent method for finding multiple solutions of simultaneous nonlinear equations , 1972 .

[3]  George A. Bekey,et al.  A Comparative Evaluation of Two Global Search Algorithms , 1974, IEEE Trans. Syst. Man Cybern..

[4]  Alan J. Mayne,et al.  Towards Global Optimisation 2 , 1976 .

[5]  Wyn L. Price,et al.  A Controlled Random Search Procedure for Global Optimisation , 1977, Comput. J..

[6]  G. Bekey,et al.  A global optimization algorithm using adaptive random search , 1980 .

[7]  Alexander H. G. Rinnooy Kan,et al.  A stochastic method for global optimization , 1982, Math. Program..

[8]  Eric Walter,et al.  A general-purpose global optimizer: implementation and applications , 1984 .

[9]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[10]  Alexander H. G. Rinnooy Kan,et al.  Stochastic methods for global optimization , 1984 .

[11]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[12]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[13]  D. G. Brooks,et al.  Computational experience with generalized simulated annealing over continuous variables , 1988 .

[14]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .

[15]  J. Mockus Bayesian Approach to Global Optimization: Theory and Applications , 1989 .

[16]  Pierre Hansen,et al.  An analytical approach to global optimization , 1991, Math. Program..

[17]  Yue-Fang Chang Recursive methods for statistical prediction with applications , 1991 .

[18]  J. Elder Global R/sup d/ optimization when probes are expensive: the GROPE algorithm , 1992, [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics.

[19]  Prem K. Goel,et al.  A stochastic probing algorithm for global optimization , 1992, J. Glob. Optim..

[20]  I. Elder,et al.  Efficient optimization through response surface modeling: a grope algorithm , 1993 .