A Trace Based Bisimulation for the Spi Calculus: An Extended Abstract

A notion of open bisimulation is formulated for the spi calculus, an extension of the π-calculus with cryptographic primitives. In this formulation, open bisimulation is indexed by pairs of symbolic traces, which represent the history of interactions between the environment with the pairs of processes being checked for bisimilarity. The use of symbolic traces allows for a symbolic treatment of bound input in bisimulation checking which avoids quantification over input values. Open bisimilarity is shown to be sound with respect to testing equivalence, and futher, it is shown to be an equivalence relation on processes and a congruence on finite processes.

[1]  A. Tiu A Formulation of Open Bisimulation for the Spi Calculus , 2007 .

[2]  Rocco De Nicola,et al.  A Symbolic Semantics for the pi-Calculus , 1996, Inf. Comput..

[3]  Vincent Danos,et al.  Reversible Communicating Systems , 2004, CONCUR.

[4]  Matthew Hennessy,et al.  Symbolic Bisimulations , 1995, Theor. Comput. Sci..

[5]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[6]  Davide Sangiorgi,et al.  A theory of bisimulation for the π-calculus , 2009, Acta Informatica.

[7]  Sébastien Briais A Symbolic Characterisation of Open Bisimulation for the Spi Calculus , 2007 .

[8]  D. Walker,et al.  A Calculus of Mobile Processes, Part Ii , 1989 .

[9]  D. Walker,et al.  A Calculus of Mobile Processes, Part I , 1989 .

[10]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[11]  Dale Miller,et al.  A Proof Search Specification of the pi-Calculus , 2005, FGUC.

[12]  Martín Abadi,et al.  A Calculus for Cryptographic Protocols: The spi Calculus , 1999, Inf. Comput..

[13]  Uwe Nestmann,et al.  On Bisimulations for the Spi Calculus , 2002, AMAST.

[14]  Davide Sangiorgi,et al.  On the bisimulation proof method , 1998, Mathematical Structures in Computer Science.

[15]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[16]  Uwe Nestmann,et al.  Open bisimulation, revisited , 2007, Theor. Comput. Sci..

[17]  Rajeev Goré,et al.  A Proof Theoretic Analysis of Intruder Theories , 2009, RTA.

[18]  Michele Boreale,et al.  Symbolic Trace Analysis of Cryptographic Protocols , 2001, ICALP.

[19]  Rocco De Nicola,et al.  Proof techniques for cryptographic processes , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[20]  Dale Miller,et al.  A proof theory for generic judgments , 2005, TOCL.

[21]  Martín Abadi,et al.  A Bisimulation Method for Cryptographic Protocols , 1998, Nord. J. Comput..

[22]  Uwe Nestmann,et al.  Symbolic Bisimulation in the Spi Calculus , 2004, CONCUR.