Accurate bond dissociation energies (D 0) for FHF− isotopologues

Accurate bond dissociation energies (D 0) are determined for three isotopologues of the bifluoride ion (FHF−). While the zero-point vibrational contributions are taken from our previous work (P. Sebald, A. Bargholz, R. Oswald, C. Stein, P. Botschwina, J. Phys. Chem. A, DOI: 10.1021/jp3123677), the equilibrium dissociation energy (D e ) of the reaction was obtained by a composite method including frozen-core (fc) CCSD(T) calculations with basis sets up to cardinal number n = 7 followed by extrapolation to the complete basis set limit. Smaller terms beyond fc-CCSD(T) cancel each other almost completely. The D 0 values of FHF−, FDF−, and FTF− are predicted to be 15,176, 15,191, and 15,198 cm−1, respectively, with an uncertainty of ca. 15 cm−1.

[1]  P. Botschwina,et al.  FHF- isotopologues: highly anharmonic hydrogen-bonded systems with strong Coriolis interaction. , 2013, The journal of physical chemistry. A.

[2]  Martin Schütz,et al.  Molpro: a general‐purpose quantum chemistry program package , 2012 .

[3]  David Feller,et al.  On the effectiveness of CCSD(T) complete basis set extrapolations for atomization energies. , 2011, The Journal of chemical physics.

[4]  Hans-Joachim Werner,et al.  Benchmark Studies for Explicitly Correlated Perturbation- and Coupled Cluster Theories. javascript:filterformular(´3´) , 2010 .

[5]  Hans-Joachim Werner,et al.  Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. , 2009, The Journal of chemical physics.

[6]  Kirk A. Peterson,et al.  Optimized complementary auxiliary basis sets for explicitly correlated methods: aug-cc-pVnZ orbital basis sets , 2009 .

[7]  Hans-Joachim Werner,et al.  Simplified CCSD(T)-F12 methods: theory and benchmarks. , 2009, The Journal of chemical physics.

[8]  David Feller,et al.  A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. , 2008, The Journal of chemical physics.

[9]  S. Hirata,et al.  Anharmonic vibrational frequencies and vibrationally averaged structures and nuclear magnetic resonance parameters of FHF-. , 2008, The Journal of chemical physics.

[10]  Hans-Joachim Werner,et al.  A simple and efficient CCSD(T)-F12 approximation. , 2007, The Journal of chemical physics.

[11]  David Feller,et al.  Probing the limits of accuracy in electronic structure calculations: is theory capable of results uniformly better than "chemical accuracy"? , 2007, The Journal of chemical physics.

[12]  Mihály Kállay,et al.  Analytic calculation of the diagonal Born-Oppenheimer correction within configuration-interaction and coupled-cluster theory. , 2006, The Journal of chemical physics.

[13]  Christof Hättig,et al.  Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr , 2005 .

[14]  Florian Weigend,et al.  A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency , 2002 .

[15]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[16]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[17]  B. C. Garrett,et al.  The utility of many-body decompositions for the accurate basis set extrapolation of ab initio data , 1999 .

[18]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon , 1996 .

[19]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[20]  P. Wenthold,et al.  BOND DISSOCIATION ENERGIES OF F2- AND HF2-. A GAS-PHASE EXPERIMENTAL AND G2 THEORETICAL STUDY , 1995 .

[21]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[22]  Bernd A. Hess,et al.  Revision of the Douglas-Kroll transformation. , 1989, Physical review. A, General physics.

[23]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[24]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[25]  K. Kawaguchi,et al.  Diode laser spectroscopy of the ν3 and ν2 bands of FHF− in 1300 cm−1 region , 1987 .

[26]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[27]  T. Mcmahon,et al.  Gas-phase bihalide and pseudobihalide ions. An ion cyclotron resonance determination of hydrogen bond energies in XHY- species (X, Y = F, Cl, Br, CN) , 1984 .

[28]  T. Mcmahon,et al.  Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to Broensted acids from gas-phase fluoride exchange equilibrium measurements , 1983 .

[29]  T. Mcmahon,et al.  GAS-PHASE BIFLUORIDE ION. AN ION CYCLOTRON RESONANCE DETERMINATION OF THE HYDROGEN BOND ENERGY IN FLUORIDE ION (FHF-) FROM GAS-PHASE FLUORIDE TRANSFER EQUILIBRIUM MEASUREMENTS , 1982 .

[30]  Ch. Seidel,et al.  Einführung in die theoretische Chemie. Band 2: Die chemische Bindung. Von W. KUTZELNIGG. Weinheim/New York: Verlag Chemie 1978. XXXI, 594 S., Lwd., DM 98,– , 1979 .

[31]  Uday K. Sengupta,et al.  Infrared laser spectra of HF and DF , 1979 .

[32]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[33]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program, Release Dalton2011 , 2011 .

[34]  J. Paldus,et al.  Recent progress in coupled cluster methods : theory and applications , 2010 .

[35]  F. Manby,et al.  Efficient Explicitly Correlated Coupled-Cluster Approximations , 2010 .

[36]  P. Botschwina,et al.  Theoretical investigations of proton-bound cluster ions. , 2001, Faraday discussions.

[37]  Robert J. Harrison,et al.  Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets. , 2001 .

[38]  E. Gey,et al.  Einführung in die Theoretische Chemie , 1995 .

[39]  A. Liebminger,et al.  Footprints of climate in groundwater and precipitation , 2006 .

[40]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[41]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .