Evolving sets, mixing and heat kernel bounds

[1]  Prasad Tetali,et al.  Isoperimetric Invariants For Product Markov Chains and Graph Products , 2004, Comb..

[2]  É. Remy,et al.  Isoperimetry and heat kernel decay on percolation clusters , 2003, math/0301213.

[3]  Peter Winkler Rapid mixing , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[4]  R. Karman Rapid Mixing in Markov Chains , 2002 .

[5]  Ravi Montenegro,et al.  Edge isoperimetry and rapid mixing on matroids and geometric Markov chains , 2001, STOC '01.

[6]  L. Saloff‐Coste RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .

[7]  Thierry Coulhon,et al.  A geometric approach to on-diagonal heat kernel lower bounds on groups , 2001 .

[8]  Paul Sabatier,et al.  A survey on the relationships between volumegrowth , isoperimetry , and the behavior of simplerandom walk on Cayley graphs , with examplesCh , 2001 .

[9]  Elchanan Mossel,et al.  On the mixing time of a simple random walk on the super critical percolation cluster , 2000, math/0011092.

[10]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[11]  László Lovász,et al.  Faster mixing via average conductance , 1999, STOC '99.

[12]  Johan Jonasson,et al.  Rates of convergence for lamplighter processes , 1997 .

[13]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[14]  Thierry Coulhon,et al.  Ultracontractivity and Nash Type Inequalities , 1996 .

[15]  P. Diaconis,et al.  Nash inequalities for finite Markov chains , 1996 .

[16]  Shing-Tung Yau,et al.  Eigenvalues of Graphs and Sobolev Inequalities , 1995, Combinatorics, Probability and Computing.

[17]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[18]  F. Chung Laplacians of graphs and Cheeger inequalities , 1993 .

[19]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[20]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[21]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[22]  Milena Mihail,et al.  Conductance and convergence of Markov chains-a combinatorial treatment of expanders , 1989, 30th Annual Symposium on Foundations of Computer Science.

[23]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[24]  N. Alon Eigenvalues and expanders , 1986, Comb..

[25]  N. Varopoulos Isoperimetric inequalities and Markov chains , 1985 .

[26]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[27]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .