The Star Formation Rate Density and Dust Attenuation Evolution over 12 Gyr with the VVDS Surveys

[Abridged] We investigate the global galaxy evolution over 12 Gyr (0.05 1.7, we set alpha steepening with (1+z). The absolute magnitude M*_FUV brightens in the entire range 0 2 it is on average brighter than in the literature, while phi* is smaller. Our total LD shows a peak at z=2, present also when considering all sources of uncertainty. The SFRD history peaks as well at z=2. It rises by a factor of 6 during 2 Gyr (from z=4.5 to z=2), and then decreases by a factor of 12 during 10 Gyr down to z=0.05. This peak is mainly produced by a similar peak within the population of galaxies with -21.5 2 of the SFRD is compelling for models of galaxy formation. The mean dust attenuation A_FUV of the global galaxy population rises by 1 mag during 2 Gyr from z=4.5 to z=2, reaches its maximum at z=1 (A_FUV=2.2 mag), and then decreases by 1.1 mag during 7 Gyr down to z=0. The dust attenuation maximum is reached 2 Gyr after the SFRD peak, implying a contribution from the intermediate-mass stars to the dust production at z<2.

[1]  G. Efstathiou Suppressing the formation of dwarf galaxies via photoionization , 1992 .

[2]  J. Hjorth,et al.  Production of dust by massive stars at high redshift , 2011, 1108.0403.

[3]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[4]  O. Fèvre,et al.  Spectral Energy Distributions of Hard X-Ray Selected Active Galactic Nuclei in the XMM-Newton Medium Deep Survey , 2007 .

[5]  S. Maddox,et al.  The Hα luminosity function and star formation rate up to z ∼ 1 ⋆ , 2001, astro-ph/0111390.

[6]  Oswald H. W. Siegmund,et al.  The Ultraviolet Galaxy Luminosity Function in the Local Universe from GALEX Data , 2004 .

[7]  A. Mazure,et al.  The Vimos VLT deep survey Global properties of 20 000 galaxies in the IAB < 22.5 WIDE survey , 2008, 0804.4568.

[8]  T. D. Matteo,et al.  Energy input from quasars regulates the growth and activity of black holes and their host galaxies , 2005, Nature.

[9]  S. Noll,et al.  The evolution of the luminosity functions in the FORS Deep Field from low to high redshift: I. The blue bands , 2004, astro-ph/0403535.

[10]  A. Mazure,et al.  A large population of galaxies 9 to 12 billion years back in the history of the Universe , 2005, Nature.

[11]  P. Hopkins,et al.  Mergers, active galactic nuclei and ‘normal’ galaxies: contributions to the distribution of star formation rates and infrared luminosity functions , 2009, 0911.1131.

[12]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[13]  B. Milliard,et al.  An Ultraviolet selected galaxy redshift survey: New estimates of the local star formation rate , 1998 .

[14]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[15]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[16]  K. Aoki,et al.  Differential evolution of the UV luminosity function of Lyman break galaxies from z ∼ 5 to 3* , 2007, astro-ph/0701841.

[17]  UV dust attenuation in normal star-forming galaxies. I. Estimating the L_TIR/L_FUV ratio , 2005, astro-ph/0510165.

[18]  The galaxy luminosity function at z ≃ 1 in the hudf: Probing the dwarf population , 2007, astro-ph/0703743.

[19]  R. Teyssier,et al.  Cold streams in early massive hot haloes as the main mode of galaxy formation , 2008, Nature.

[20]  A. M. Hopkins,et al.  On the Evolution of Star-forming Galaxies , 2004, astro-ph/0407170.

[21]  Tucson,et al.  Infrared Luminosity Functions from the Chandra Deep Field-South: The Spitzer View on the History of Dusty Star Formation at 0 ≲ z ≲ 1* , 2005, astro-ph/0506462.

[22]  L. Moustakas,et al.  Cosmic Variance in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309071.

[23]  Lennox L. Cowie,et al.  Evidence for a Gradual Decline in the Universal Rest-Frame Ultraviolet Luminosity Density for z < 1 , 1999, astro-ph/9904345.

[24]  B. Garilli,et al.  Bias in the estimation of global luminosity functions , 2004, astro-ph/0402202.

[25]  S.Paltani,et al.  The VIMOS VLT Deep Survey. Evolution of the luminosity functions by galaxy type up to z = 1.5 from f , 2005, astro-ph/0506393.

[26]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[27]  B. Garilli,et al.  The cosmic star formation rate evolution from z = 5 to z = 0 from the VIMOS VLT deep survey , 2006, astro-ph/0609005.

[28]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[29]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[30]  F. Fontanot,et al.  The many manifestations of downsizing: hierarchical galaxy formation models confront observations , 2009, 0901.1130.

[31]  Benjamin D. Johnson,et al.  Extinction-corrected Star Formation Rates Empirically Derived from Ultraviolet-Optical Colors , 2007, 0707.3165.

[32]  R. J. Brunner,et al.  The Evolution of the Global Star Formation History as Measured from the Hubble Deep Field , 1997 .

[33]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[34]  D. Thompson,et al.  COSMOS PHOTOMETRIC REDSHIFTS WITH 30-BANDS FOR 2-deg2 , 2008, 0809.2101.

[35]  Andrew M. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[36]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[37]  L. Pozzetti,et al.  The Star Formation History of Field Galaxies , 1997, astro-ph/9708220.

[38]  S. Bamford,et al.  GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies , 2011, 1103.3080.

[39]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[40]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[41]  M. Sawicki,et al.  Keck Deep Fields. II. The Ultraviolet Galaxy Luminosity Function at z ~ 4, 3, and 2* , 2005, astro-ph/0507519.

[42]  M. Sullivan,et al.  An ultraviolet-selected galaxy redshift survey -- II. The physical nature of star formation in an enlarged sample , 1999, astro-ph/9910104.

[43]  R. Somerville,et al.  The effect of galaxy mass ratio on merger-driven starbursts , 2007, 0709.3511.

[44]  D. Burke,et al.  STAR FORMATION HISTORY SINCE z = 1.5 AS INFERRED FROM REST-FRAME ULTRAVIOLET LUMINOSITY DENSITY EVOLUTION , 2002, astro-ph/0203168.

[45]  S. Okamura,et al.  Subaru Deep Survey. VI. A Census of Lyman Break Galaxies at z ≃ 4 and 5 in the Subaru Deep Fields: Clustering Properties* , 2003 .

[46]  M. Fukugita Global amount of dust in the universe , 2011, 1103.4191.

[47]  Y. Mellier,et al.  The VIRMOS deep imaging survey - I. Overview, survey strategy, and CFH12K observations , 2004 .

[48]  L. Guzzo,et al.  The Cosmic Evolution Survey (COSMOS): Overview* , 2006, astro-ph/0612305.

[49]  P. Hopkins,et al.  A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei , 2008, 0808.1227.

[50]  S. Driver,et al.  Quantifying cosmic variance , 2010, 1005.2538.

[51]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[52]  C. Marmo,et al.  The WIRCam Deep Survey I. Counts, colours, and mass-functions derived from near-infrared imaging in the CFHTLS deep fields , 2011, 1111.6997.

[53]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[54]  Cambridge,et al.  The evolution of stellar mass and the implied star formation history , 2008, 0801.1594.

[55]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[56]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[57]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[58]  N. Prantzos An Introduction to Galactic Chemical Evolution , 2007, 0709.0833.

[59]  M. Dantel-Fort,et al.  The VIRMOS deep imaging survey: II: CFH12K BVRI optical data for the 0226-04 deep field , 2003 .

[60]  S. M. Fall,et al.  Star formation history and dust content of galaxies drawn from ultraviolet surveys , 2003, astro-ph/0312474.

[61]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[62]  A. Mazure,et al.  The VIMOS-VLT deep survey - Evolution of the galaxy luminosity function up to z = 2 in first epoch data , 2004, astro-ph/0409134.

[63]  J. Brinchmann,et al.  The VIMOS VLT deep survey - the ultraviolet galaxy luminosity function and luminosity density at 3 ≤ z ≤ 4 , 2006, astro-ph/0608176.

[64]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[65]  A. Dekel,et al.  On the puzzling plateau in the specific star formation rate at z= 2–7 , 2011, 1103.3011.

[66]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[67]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[68]  Alessandro Bressan,et al.  Can the faint submillimetre galaxies be explained in the Λ cold dark matter model , 2005 .

[69]  Carlos S. Frenk,et al.  A recipe for galaxy formation , 1994 .

[70]  A. Mazure,et al.  The VIMOS VLT Deep Survey - Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs , 2008, 0807.2578.

[71]  B. Garilli,et al.  Properties and environment of radio-emitting galaxies in the VLA-zCOSMOS survey , 2009, 0911.0523.

[72]  B. Garilli,et al.  The VIMOS VLT Deep Survey: star formation rate density of Lyα emitters from a sample of 217 galaxies with spectroscopic redshifts 2 ≤ z ≤ 6.6 , 2010, 1003.3480.

[73]  A. Fontana,et al.  The blue UV slopes of z ~ 4 Lyman break galaxies: implications for the corrected star formation rate density , 2011, 1109.1757.

[74]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[75]  Denis Burgarella,et al.  The evolution of the ultraviolet and infrared luminosity densities in the universe at 0 < z < 1 , 2005 .

[76]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[77]  B. Garilli,et al.  Mid- and far-infrared luminosity functions and galaxy evolution from multiwavelength Spitzer observations up to z ~ 2.5 , 2009, 0910.5649.

[78]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[79]  Christopher D. Martin,et al.  Spitzer View on the Evolution of Star-forming Galaxies from z = 0 to z ~ 3 , 2005, astro-ph/0505101.