A convergence proof of an iterative subspace method for eigenvalues problems
暂无分享,去创建一个
[1] Achi Brandt,et al. Multigrid method for nearly singular and slightly indefinite problems , 1986 .
[2] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[3] E. Davidson. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .
[4] D. Calvetti,et al. AN IMPLICITLY RESTARTED LANCZOS METHOD FOR LARGE SYMMETRIC EIGENVALUE PROBLEMS , 1994 .
[5] Bernard Philippe,et al. The Davidson Method , 1994, SIAM J. Sci. Comput..
[6] J. Davenport. Editor , 1960 .
[7] S. Eisenstat,et al. A Stable and Efficient Algorithm for the Rank-One Modification of the Symmetric Eigenproblem , 1994, SIAM J. Matrix Anal. Appl..
[8] S. McCormick,et al. Multigrid Methods for Differential Eigenproblems , 1983 .
[9] R. Morgan. Computing Interior Eigenvalues of Large Matrices , 1991 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] L G SleijpenGerard,et al. A Jacobi--Davidson Iteration Method for Linear Eigenvalue Problems , 1996 .
[12] H. Yserentant. Old and new convergence proofs for multigrid methods , 1993, Acta Numerica.