The Itô-Nisio theorem, quadratic Wiener functionals, and 1-solitons

Among Professor Kiyosi Ito's achievements, there is the Ito-Nisio theorem, a completely general theorem relative to the Fourier series decomposition of Brownian motion. In this paper, some of its applications will be reviewed, and new applications to 1-soliton solutions to the Korteweg-de Vries (KdV for short) equation and Eulerian polynomials will be given.

[1]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[2]  Reiichiro Kawai,et al.  Infinite Variation Tempered Stable Ornstein–Uhlenbeck Processes with Discrete Observations , 2010, Commun. Stat. Simul. Comput..

[3]  M. Pinsky Introduction to Fourier analysis and wavelets , 2002 .

[4]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[5]  Brownian sheet and reflectionless potentials , 2005, math/0507229.

[6]  Masanobu Kaneko,et al.  ULTRADISCRETIZATION OF A SOLVABLE TWO-DIMENSIONAL CHAOTIC MAP ASSOCIATED WITH THE HESSE CUBIC CURVE , 2009, 0903.0331.

[7]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[8]  J. Doob Stochastic processes , 1953 .

[9]  Wiener functionals of second order and their lévy measures , 2002 .

[10]  N. Ikeda,et al.  Quadratic Wiener Functionals, Kalman-Bucy Filters, and the KdV Equation , 2004 .

[11]  Kiyosi Itô,et al.  ON STATIONARY SOLUTIONS OF A STOCHASTIC DIFFERENTIAL EQUATION. , 1964 .

[12]  M. Yor Remarques sur une formule de Paul Lévy , 1980 .

[13]  Kiyosi Itô,et al.  On the convergence of sums of independent Banach space valued random variables , 1968 .

[14]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[15]  P. Levy Wiener's Random Function, and Other Laplacian Random Functions , 1951 .

[16]  M. Lévy Le Mouvement Brownien Plan , 1940 .

[17]  H. J. Morowitz Les Atomes , 1913, Nature.

[18]  N. Wiener,et al.  Fourier Transforms in the Complex Domain , 1934 .

[19]  Kazufumi Kimoto,et al.  Alpha-determinant cyclic modules and Jacobi polynomials , 2007, 0710.3669.

[20]  M. Kac Integration in function spaces and some of its applications , 1980 .

[21]  N. Wiener I am a mathematician : the later life of a prodigy ; an autobiographical account of the mature years and career of Norbert Wiener and a continuation of the account of his childhood in Ex-prodigy , 1956 .

[22]  N. Ikeda,et al.  Quadratic Wiener functionals and dynamics on Grassmannians , 2001 .

[23]  B. Gaveau Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents , 1977 .

[24]  Terry Lyons,et al.  System Control and Rough Paths , 2003 .

[25]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[26]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[27]  Michel Loève,et al.  Probability Theory I , 1977 .

[28]  N. Ikeda,et al.  Van Vleck-Pauli formula for Wiener integrals and Jacobi fields , 1996 .

[29]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .

[30]  Z. Ciesielski Hölder conditions for realizations of Gaussian processes , 1961 .

[31]  H. Matsumoto Semiclassical Asymptotics of Eigenvalues for Schrödinger Operators with Magnetic Fields , 1995 .

[32]  Kiyosi Itô Multiple Wiener Integral , 1951 .

[33]  丸山 儀四郎,et al.  On the Transition Probability Functions of the Markov Process , 1954 .

[34]  Kiyosi Itô Differential Equations Determining a Markoff Process , 1987 .

[35]  J. H. Van Vleck The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics. , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Cohen Eulerian polynomials of spherical type , 2008 .

[37]  N. Ikeda,et al.  Integral of Differential Forms along the Path of Diffusion Processes , 1979 .

[38]  G. Hardy Weierstrass’s non-differentiable function , 1916 .

[39]  Nobuyuki Ikeda,et al.  Ito's Stochastic Calculus and Probability Theory , 1996 .