Excitability in the p53 network mediates robust signaling with tunable activation thresholds in single cells

[1]  A. Loewer,et al.  Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics and cell fate in response to DNA damage , 2016, Molecular biology of the cell.

[2]  O. Demidov,et al.  Wip1 phosphatase: between p53 and MAPK kinases pathways , 2016, Oncotarget.

[3]  M. Durante,et al.  Application of the local effect model to predict DNA double-strand break rejoining after photon and high-LET irradiation. , 2015, Radiation protection dosimetry.

[4]  Gregor Mönke,et al.  Stochastic oscillations in living cells , 2015 .

[5]  Martin Falcke,et al.  Reliable Encoding of Stimulus Intensities Within Random Sequences of Intracellular Ca2+ Spikes , 2014, Science Signaling.

[6]  M. Elowitz,et al.  Functional Roles of Pulsing in Genetic Circuits , 2013, Science.

[7]  Galit Lahav,et al.  The p53 response in single cells is linearly correlated to the number of DNA breaks without a distinct threshold , 2013, BMC Biology.

[8]  M. Durante,et al.  A DNA Double-Strand Break Kinetic Rejoining Model Based on the Local Effect Model , 2013, Radiation research.

[9]  Seong-tae Kim,et al.  WIP1, a homeostatic regulator of the DNA damage response, is targeted by HIPK2 for phosphorylation and degradation. , 2013, Molecular cell.

[10]  Xi Chen,et al.  DNA damage strength modulates a bimodal switch of p53 dynamics for cell-fate control , 2013, BMC Biology.

[11]  J. Bartek,et al.  Gain-of-function mutations of PPM1D/Wip1 impair the p53-dependent G1 checkpoint , 2013, The Journal of cell biology.

[12]  Galit Lahav,et al.  Dynamics of the DNA damage response: insights from live-cell imaging. , 2013, Briefings in functional genomics.

[13]  John G. Albeck,et al.  Frequency-modulated pulses of ERK activity transmit quantitative proliferation signals. , 2013, Molecular cell.

[14]  Peter Donnelly,et al.  Mosaic PPM1D mutations are associated with predisposition to breast and ovarian cancer , 2012, Nature.

[15]  Kwang-Hyun Cho,et al.  Attractor Landscape Analysis Reveals Feedback Loops in the p53 Network That Control the Cellular Response to DNA Damage , 2012, Science Signaling.

[16]  Ran Kafri,et al.  Quantitative live cell imaging reveals a gradual shift between DNA repair mechanisms and a maximal use of HR in mid S phase. , 2012, Molecular cell.

[17]  Jing Liu,et al.  Modeling the Basal Dynamics of P53 System , 2011, PloS one.

[18]  T. Jacks,et al.  Caspase-2-mediated cleavage of Mdm2 creates a p53-induced positive feedback loop. , 2011, Molecular cell.

[19]  Ignacio Varela,et al.  Aging and chronic DNA damage response activate a regulatory pathway involving miR‐29 and p53 , 2011, The EMBO journal.

[20]  Galit Lahav,et al.  Stimulus-dependent dynamics of p53 in single cells , 2011, Molecular systems biology.

[21]  Markus Löbrich,et al.  Factors determining DNA double‐strand break repair pathway choice in G2 phase , 2011, The EMBO journal.

[22]  Jordi Garcia-Ojalvo,et al.  Gene circuit designs for noisy excitable dynamics. , 2011, Mathematical biosciences.

[23]  Martin Falcke,et al.  Derivation of Ca2+ signals from puff properties reveals that pathway function is robust against cell variability but sensitive for control , 2010, Proceedings of the National Academy of Sciences.

[24]  Jared E. Toettcher,et al.  A synthetic–natural hybrid oscillator in human cells , 2010, Proceedings of the National Academy of Sciences.

[25]  M. Elowitz,et al.  Functional roles for noise in genetic circuits , 2010, Nature.

[26]  Galit Lahav,et al.  Basal Dynamics of p53 Reveal Transcriptionally Attenuated Pulses in Cycling Cells , 2010, Cell.

[27]  Timothy K Lee,et al.  Single-cell NF-κB dynamics reveal digital activation and analogue information processing , 2010, Nature.

[28]  Xin Lu Tied up in loops: positive and negative autoregulation of p53. , 2010, Cold Spring Harbor perspectives in biology.

[29]  J. Cheville,et al.  USP10 Regulates p53 Localization and Stability by Deubiquitinating p53 , 2010, Cell.

[30]  Qian Yang,et al.  Nuclear Factor-κB (NF-κB) Is a Novel Positive Transcriptional Regulator of the Oncogenic Wip1 Phosphatase* , 2009, The Journal of Biological Chemistry.

[31]  Hanspeter Herzel,et al.  Quantification of Circadian Rhythms in Single Cells , 2009, PLoS Comput. Biol..

[32]  C. Prives,et al.  Blinded by the Light: The Growing Complexity of p53 , 2009, Cell.

[33]  P. Sorger,et al.  Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis , 2009, Nature.

[34]  R. Milo,et al.  Dynamic Proteomics of Individual Cancer Cells in Response to a Drug , 2008, Science.

[35]  Olivier Pourquié,et al.  Oscillating signaling pathways during embryonic development. , 2008, Current opinion in cell biology.

[36]  M. Lavin,et al.  Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer , 2008, Nature Reviews Molecular Cell Biology.

[37]  Geneviève Dupont,et al.  Stochastic aspects of oscillatory Ca2+ dynamics in hepatocytes. , 2008, Biophysical journal.

[38]  G. Lahav,et al.  Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. , 2008, Molecular cell.

[39]  S. Durell,et al.  The Wip1 phosphatase PPM1D dephosphorylates SQ/TQ motifs in checkpoint substrates phosphorylated by PI3K-like kinases. , 2007, Biochemistry.

[40]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[41]  A. Pühler,et al.  Molecular systems biology , 2007 .

[42]  Karen H. Vousden,et al.  p53 in health and disease , 2007, Nature Reviews Molecular Cell Biology.

[43]  Sandeep Krishna,et al.  Oscillation patterns in negative feedback loops , 2006, Proceedings of the National Academy of Sciences.

[44]  Anne E Carpenter,et al.  CellProfiler: image analysis software for identifying and quantifying cell phenotypes , 2006, Genome Biology.

[45]  E. Appella,et al.  Wip1 phosphatase modulates ATM-dependent signaling pathways. , 2006, Molecular cell.

[46]  Pan Du,et al.  Bioinformatics Original Paper Improved Peak Detection in Mass Spectrum by Incorporating Continuous Wavelet Transform-based Pattern Matching , 2022 .

[47]  Wafik S El-Deiry,et al.  p73 or p53 directly regulates human p53 transcription to maintain cell cycle checkpoints. , 2006, Cancer research.

[48]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[49]  John J Tyson,et al.  Another turn for p53 , 2006, Molecular systems biology.

[50]  Gürol M. Süel,et al.  An excitable gene regulatory circuit induces transient cellular differentiation , 2006, Nature.

[51]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[52]  John Jeremy Rice,et al.  A plausible model for the digital response of p53 to DNA damage. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  A. Levine,et al.  The p53 pathway: positive and negative feedback loops , 2005, Oncogene.

[54]  Andrea Ciliberto,et al.  Steady States and Oscillations in the p53/Mdm2 Network , 2005, Cell cycle.

[55]  James R. Johnson,et al.  Oscillations in NF-κB Signaling Control the Dynamics of Gene Expression , 2004, Science.

[56]  G. Wahl,et al.  Accelerated MDM2 auto‐degradation induced by DNA‐damage kinases is required for p53 activation , 2004, The EMBO journal.

[57]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[58]  Uri Alon,et al.  Dynamics of the p53-Mdm2 feedback loop in individual cells , 2004, Nature Genetics.

[59]  Mong-Hong Lee,et al.  14-3-3σ Positively Regulates p53 and Suppresses Tumor Growth , 2003, Molecular and Cellular Biology.

[60]  M. Kastan,et al.  DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation , 2003, Nature.

[61]  L. Mayo,et al.  The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network. , 2002, Trends in biochemical sciences.

[62]  K. Sneppen,et al.  Time delay as a key to apoptosis induction in the p53 network , 2002, cond-mat/0207236.

[63]  Albert J. Fornace,et al.  Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity , 2002, Nature Genetics.

[64]  Jeffrey R. Marks,et al.  Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23 , 2002, Nature Genetics.

[65]  B. Kendall Nonlinear Dynamics and Chaos , 2001 .

[66]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[67]  E. Rogakou,et al.  Megabase Chromatin Domains Involved in DNA Double-Strand Breaks in Vivo , 1999, The Journal of cell biology.

[68]  Yoichi Taya,et al.  DNA Damage-Induced Phosphorylation of p53 Alleviates Inhibition by MDM2 , 1997, Cell.

[69]  M. Oren,et al.  Mdm2 promotes the rapid degradation of p53 , 1997, Nature.

[70]  Stephen N. Jones,et al.  Regulation of p53 stability by Mdm2 , 1997, Nature.

[71]  B. Vogelstein,et al.  A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia , 1992, Cell.

[72]  D. Gillespie Markov Processes: An Introduction for Physical Scientists , 1991 .

[73]  J. Mallet-Paret,et al.  The Poincare-Bendixson theorem for monotone cyclic feedback systems , 1990 .

[74]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[75]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[76]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[77]  Sandhya Samarasinghe,et al.  Mathematical modelling of p53 basal dynamics and DNA damage response. , 2015, Mathematical biosciences.

[78]  Y. Shiloh,et al.  The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. , 2013, Nature reviews. Molecular cell biology.

[79]  in mammalian , 2012 .

[80]  Arjun Raj,et al.  Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. , 2010, Methods in enzymology.

[81]  M. Lavin Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer , 2008, Nature Reviews Molecular Cell Biology.

[82]  D B Kell,et al.  Oscillations in NF-kappaB signaling control the dynamics of gene expression. , 2004, Science.

[83]  Mong-Hong Lee,et al.  14-3-3 sigma positively regulates p53 and suppresses tumor growth. , 2003, Molecular and cellular biology.

[84]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[85]  Hermann Haken,et al.  On the foundations of synergetics , 1996 .

[86]  P. Mikhailov,et al.  Foundations of Synergetics II , 1996, Springer Series in Synergetics.

[87]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990, Bulletin of mathematical biology.

[88]  Y. Shiloh,et al.  Induction and repair of DNA damage in normal and ataxia-telangiectasia skin fibroblasts treated with neocarzinostatin. , 1983, Carcinogenesis.

[89]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.