Low temperature FTIR study of the Schiff base reprotonation during the M-to-bR backphotoreaction: Asp 85 reprotonates two distinct types of Schiff base species at different temperatures.

[1]  A. Lewis,et al.  BIPHASIC M DECAY OF HIGH pH DEHYDRATED PURPLE MEMBRANE STUDIED WITH FOURIER TRANSFORM INFRARED SPECTROSCOPY: A MODEL ACCOUNTING FOR FUNCTIONAL DIFFERENCES BETWEEN DIFFERENT M FORMS , 1993 .

[2]  H. Khorana,et al.  Aspartic acid-96 is the internal proton donor in the reprotonation of the Schiff base of bacteriorhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[3]  B. Hess,et al.  Role of aspartate-96 in proton translocation by bacteriorhodopsin. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Bamberg,et al.  Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. , 1989, The EMBO journal.

[5]  H. Khorana,et al.  Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. , 1988, Biochemistry.

[6]  R. Govindjee,et al.  Independent photocycles of the spectrally distinct forms of bacteriorhodopsin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Shuo-liang Lin,et al.  FTIR difference studies on apoproteins. Protonation states of aspartic and glutamic acid residues during the photocycle of bacteriorhodopsin , 1987 .

[8]  P. Ahl,et al.  Millisecond Fourier-transform infrared difference spectra of bacteriorhodopsin's M412 photoproduct. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[9]  B Hess,et al.  Light-driven protonation changes of internal aspartic acids of bacteriorhodopsin: an investigation by static and time-resolved infrared difference spectroscopy using [4-13C]aspartic acid labeled purple membrane. , 1985, Biochemistry.

[10]  R. Govindjee,et al.  Blue light effect on proton pumping by bacteriorhodopsin. , 1983, Biophysical journal.

[11]  G. Dollinger,et al.  Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Zagaeski,et al.  Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy. , 1981, Biochemical and biophysical research communications.

[13]  M. von Zastrow,et al.  Resonance Raman spectroscopy of chemically modified and isotopically labelled purple membranes. I. A critical examination of the carbon-nitrogen vibrational modes. , 1980, Biochimica et biophysica acta.

[14]  R. Mathies,et al.  Resonance Raman evidence for an all-trans to 13-cis isomerization in the proton-pumping cycle of bacteriorhodopsin. , 1980, Biochemistry.

[15]  P. Ormos,et al.  Electric response of a back photoreaction in the bacteriorhodopsin photocycle. , 1980, Biophysical journal.

[16]  T. Gillbro,et al.  A low temperature investigation of the intermediates of the photocycle of light-adapted bacteriorhodopsin. Optical absorption and fluorescence measurements. , 1979, Biochimica et biophysica acta.

[17]  A. Lewis,et al.  Experimental evidence for secondary protein-chromophore interactions at the Schiff base linkage in bacteriorhodopsin: Molecular mechanism for proton pumping. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[18]  U. Lachish,et al.  TIME RESOLUTION OF A BACK PHOTOREACTION IN BACTERIORHODOPSIN , 1978 .

[19]  R. Callender,et al.  Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II. , 1978, Biochemistry.

[20]  W. Stoeckenius,et al.  Transient photovoltages in purple membrane multilayers. Charge displacement in bacteriorhodopsin and its photointermediates. , 1978, Biochimica et biophysica acta.

[21]  J. Hurley,et al.  More evidence that light isomerises the chromophore of purple membrane protein , 1978, Nature.

[22]  B. Hess,et al.  The photochemical reaction of the 412 nm chromophore of bacteriorhodopsin , 1977, FEBS letters.

[23]  T. Ebrey,et al.  The quantum efficiency for the photochemical conversion of the purple membrane protein. , 1977, Biophysical journal.

[24]  W. Stoeckenius,et al.  Tunable laser resonance raman spectroscopy of bacteriorhodopsin. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Oesterhelt,et al.  Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. , 1974, Methods in enzymology.

[26]  B. Hess,et al.  Reversible photolysis of the purple complex in the purple membrane of Halobacterium halobium. , 1973, European journal of biochemistry.