Geometry and topology of symplectic resolutions
暂无分享,去创建一个
[1] T. Bridgeland. Derived categories of coherent sheaves , 2006, math/0602129.
[2] D. Rumynin,et al. Singular Localization and Intertwining Functors for Reductive Lie Algebras in Prime Characteristic , 2006, Nagoya Mathematical Journal.
[3] D. Kaledin. Derived Equivalences by Quantization , 2005, math/0504584.
[4] M. Lehn,et al. Singular symplectic moduli spaces , 2005, math/0504202.
[5] R. Bezrukavnikov,et al. Fedosov quantization in positive characteristic , 2005, math/0501247.
[6] V. Drinfeld. QUANTIZATION OF HITCHIN’S INTEGRABLE SYSTEM AND HECKE EIGENSHEAVES , 2005 .
[7] Kobi Kremnizer,et al. Localization for quantum groups at a root of unity , 2004, math/0407048.
[8] M. Lehn,et al. Local structure of hyperkaehler singularities in O'Grady's examples , 2004, math/0405575.
[9] H. Esnault,et al. Lectures on Vanishing Theorems , 2004 .
[10] I. Gordon,et al. Representations of symplectic reflection algebras and resolutions of deformations of symplectic quotient singularities , 2003, math/0310187.
[11] D. Kaledin,et al. Fedosov quantization in algebraic context , 2003, math/0309290.
[12] Baohua Fu,et al. Uniqueness of crepant resolutions and symplectic singularities , 2003, math/0306091.
[13] Y. Namikawa. Mukai flops and derived categories II , 2003, math/0305086.
[14] Baohua Fu. Symplectic resolutions for nilpotent orbits , 2002, math/0205048.
[15] V. Ginzburg,et al. Poisson deformations of symplectic quotient singularities , 2002, math/0212279.
[16] M. Bergh. Three-dimensional flops and noncommutative rings , 2002, math/0207170.
[17] D. Rumynin,et al. Localization of modules for a semisimple Lie algebra in prime characteristic (with an Appendix by R. Bezrukavnikov and S. Riche: Computation for sl(3)) , 2002, math/0205144.
[18] Y. Kawamata. D-Equivalence and K-Equivalence , 2002, math/0205287.
[19] Y. Namikawa. Mukai flops and derived categories , 2002, math/0203287.
[20] V. Ginzburg,et al. Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism , 2000, math/0011114.
[21] Y. Namikawa. Deformation theory of singular symplectic n-folds , 2000, math/0010113.
[22] Y. Namikawa. Extension of 2-forms and symplectic varieties , 2000, math/0010114.
[23] T. Bridgeland. Flops and derived categories , 2000, math/0009053.
[24] M. Verbitsky,et al. Period Map for Non-Compact Holomorphically Symplectic Manifolds , 2000, math/0005007.
[25] A. Beauville. Symplectic singularities , 1999, math/9903070.
[26] Miles Reid,et al. Mukai implies McKay: the McKay correspondence as an equivalence of derived categories , 1999, math/9908027.
[27] M. Verbitsky. Holomorphic symplectic geometry and orbifold singularities , 1999, math/9903175.
[28] N. Chriss,et al. Representation theory and complex geometry , 1997 .
[29] P. Etingof,et al. Quantization of Lie bialgebras, I , 1995, q-alg/9506005.
[30] A.Bondal,et al. Semiorthogonal decomposition for algebraic varieties , 1995, alg-geom/9506012.
[31] A. Bondal,et al. Semiorthogonal decompositions for algebraic varieties. , 1995 .
[32] R. Carter,et al. INTRODUCTION TO QUANTUM GROUPS (Progress in Mathematics 110) , 1995 .
[33] N. Reshetikhin,et al. Quantum Groups , 1993, hep-th/9311069.
[34] H. Nakajima. Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras , 1994 .
[35] B. Fedosov. A simple geometrical construction of deformation quantization , 1994 .
[36] A. Beilinson,et al. A proof of Jantzen conjectures , 1993 .
[37] George Lusztig,et al. Introduction to Quantum Groups , 1993 .
[38] Nicolai Reshetikhin,et al. Quantum Groups , 1993 .
[39] Y. Kawamata. Unobstructed deformations-a remark on a paper of Z. Ran, Correction , 1992 .
[40] C. Procesi,et al. Homology of the zero-set of a nilpotent vector field on a flag manifold , 1988 .
[41] D. Gorenstein,et al. Algebraic approximation of structures over complete local rings , 1969 .