Vlsi Implementation of WiMAX Convolutional Turbo Code Encoder and Decoder

A VLSI encoder and decoder implementation for the IEEE 802.16 WiMax convolutional turbo code is presented. Architectural choices employed to achieve high throughput, while granting a limited occupation of resources, are addressed both for the encoder and decoder side, including also the subblock interleaving and symbol selection functions specified in the standard. The complete encoder and decoder architectures, implemented on a 0.13 μm standard cell technology, sustain a decoded throughput of more than 90 Mb/s with a 200 MHz clock frequency. The encoder has the complexity of 9.2 kgate of logic and 187.2 kbit of memory, whereas the complete decoder requires 167.7 kgate and 1163 kbit.

[1]  Jing Sun,et al.  Extended tail-biting schemes for turbo codes , 2005, IEEE Communications Letters.

[2]  V. Derudder,et al.  A 80 Mb/s low-power scalable turbo codec core , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[3]  Kwyro Lee,et al.  Design of dividable interleaver for parallel decoding in turbo codes , 2002 .

[4]  Sergio Benedetto,et al.  Mapping interleaving laws to parallel turbo decoder architectures , 2004, IEEE Communications Letters.

[5]  A. Giulietti,et al.  Parallel turbo coding interleavers: avoiding collisions in accesses to storage elements , 2002 .

[6]  M. Jezequel,et al.  Exploring Parallel Processing Levels for Convolutional Turbo Decoding , 2006, 2006 2nd International Conference on Information & Communication Technologies.

[7]  Amer Baghdadi,et al.  ASIP-Based Multiprocessor SoC Design for Simple and Double Binary Turbo Decoding , 2006, Proceedings of the Design Automation & Test in Europe Conference.

[8]  Tughrul Arslan,et al.  An Efficient Decoder Scheme for Double Binary Circular Turbo Codes , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[9]  Sergio Benedetto,et al.  Design of fixed-point iterative decoders for concatenated codes with interleavers , 2001, IEEE J. Sel. Areas Commun..

[10]  Sergio Benedetto,et al.  Algorithm for continuous decoding of turbo codes , 1996 .

[11]  In-Cheol Park,et al.  Double-Binary Circular Turbo Decoding Based on Border Metric Encoding , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  Kung Yao,et al.  An efficient and practical architecture for high speed turbo decoders , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[13]  In-Cheol Park,et al.  SIMD Processor-Based Turbo Decoder Supporting Multiple Third-Generation Wireless Standards , 2007, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[14]  Norbert Wehn,et al.  Turbo-decoder quantization for UMTS , 2001, IEEE Communications Letters.

[15]  Jr. G. Forney,et al.  Viterbi Algorithm , 1973, Encyclopedia of Machine Learning.

[16]  Barry G. Evans,et al.  Constant log-MAP decoding algorithm for duo-binary turbo codes , 2006 .

[17]  Catherine Douillard,et al.  Iterative Decoding of Concatenated Convolutional Codes: Implementation Issues , 2007, Proceedings of the IEEE.

[18]  M. Re,et al.  Implementation of DVB-RCS turbo decoder for satellite on-board processing , 2002, ICCSC'02. 1st IEEE International Conference on Circuits and Systems for Communications. Proceedings (IEEE Cat. No.02EX605).

[19]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[20]  Norbert Wehn,et al.  Enabling high-speed turbo-decoding through concurrent interleaving , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[21]  Ramesh Pyndiah,et al.  Near-optimum decoding of product codes: block turbo codes , 1998, IEEE Trans. Commun..

[22]  Claude Berrou,et al.  Designing good permutations for turbo codes: towards a single model , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[23]  Patrick Robertson,et al.  Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding , 1997, Eur. Trans. Telecommun..

[24]  J. Vogt,et al.  Improving the max-log-MAP turbo decoder , 2000 .

[25]  Claude Berrou,et al.  The advantages of non-binary turbo codes , 2001, Proceedings 2001 IEEE Information Theory Workshop (Cat. No.01EX494).

[26]  Dariush Divsalar,et al.  Soft-input soft-output modules for the construction and distributed iterative decoding of code networks , 1998, Eur. Trans. Telecommun..

[27]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[28]  Andries P. Hekstra,et al.  An alternative to metric rescaling in Viterbi decoders , 1989, IEEE Trans. Commun..

[29]  Filippo Speziali,et al.  Scalable and area efficient concurrent interleaver for high throughput turbo-decoders , 2004, Euromicro Symposium on Digital System Design, 2004. DSD 2004..

[30]  Marc P. C. Fossorier,et al.  Shuffled iterative decoding , 2005, IEEE Transactions on Communications.

[31]  S. Dolinar,et al.  Weight distributions for turbo codes using random and nonrandom permutations , 1995 .

[32]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[33]  Norbert Wehn,et al.  A Reconfigurable Applcation Specific Instruction Set Processor for Viterbi and Log-MAP Decoding , 2006, 2006 IEEE Workshop on Signal Processing Systems Design and Implementation.

[34]  Sergio Benedetto,et al.  Design of Prunable Interleavers for Parallel Turbo Decoder Architectures , 2007, IEEE Commun. Lett..

[35]  Andrew J. Viterbi,et al.  An Intuitive Justification and a Simplified Implementation of the MAP Decoder for Convolutional Codes , 1998, IEEE J. Sel. Areas Commun..