Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata

In this paper we propose a probabilistic analysis of the relaxation time of elementary finite cellular automata (i.e., {0,1} states, radius 1 and unidimensional) for which both states are quiescent (i.e., (0,0,0) ↦ 0 and (1,1,1) ↦ 1), under α-asynchronous dynamics (i.e., each cell is updated at each time step independently with probability 0 < α ≤ 1). This work generalizes previous work in [1], in the sense that we study here a continuous range of asynchronism that goes from full asynchronism to full synchronism. We characterize formally the sensitivity to asynchronism of the relaxation times for 52 of the 64 considered automata. Our work relies on the design of probabilistic tools that enable to predict the global behaviour by counting local configuration patterns. These tools may be of independent interest since they provide a convenient framework to deal exhaustively with the tedious case analysis inherent to this kind of study. The remaining 12 automata (only 5 after symmetries) appear to exhibit interesting complex phenomena (such as polynomial/exponential/infinite phase transitions).

[1]  Henryk Fuks,et al.  Probabilistic cellular automata with conserved quantities , 2003, nlin/0305051.

[2]  Pierre Brémaud,et al.  Gibbs Fields and Monte Carlo Simulation , 1999 .

[3]  B A Huberman,et al.  Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[4]  B. Schönfisch,et al.  Synchronous and asynchronous updating in cellular automata. , 1999, Bio Systems.

[5]  T. E. Ingerson,et al.  Structure in asynchronous cellular automata , 1984 .

[6]  Massimiliano Mattera Annihilating random walks and perfect matchings of planar graphs , 2003, DRW.

[7]  Nazim Fatès Robustesse de la dynamique des systèmes discrets : le cas de l'asynchronisme dans les automates cellulaires , 2004 .

[8]  Péter Gács,et al.  Deterministic computations whose history is independent of the order of asynchronous updating , 2001, ArXiv.

[9]  Nazim Fatès,et al.  An Experimental Study of Robustness to Asynchronism for Elementary Cellular Automata , 2004, Complex Syst..

[10]  H. Fuks Nondeterministic density classification with diffusive probabilistic cellular automata. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Laurent Fribourg,et al.  Coupling and Self-stabilization , 2004, DISC.

[12]  Rodney A. Brooks,et al.  Asynchrony induces stability in cellular automata based models , 1994 .

[13]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[14]  A Omitted Proofs , .

[15]  Nazim Fatès,et al.  Fully Asynchronous Behavior of Double-Quiescent Elementary Cellular Automata , 2005, MFCS.

[16]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[17]  Nazim Fatès,et al.  Fully asynchronous behavior of double-quiescent elementary cellular automata , 2006, Theor. Comput. Sci..

[18]  D. Vere-Jones Markov Chains , 1972, Nature.

[19]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[20]  Nazim Fatès,et al.  Cellular Automata , 2004, Lecture Notes in Computer Science.

[21]  G. Grimmett,et al.  Probability and random processes , 2002 .

[22]  P. Louis Automates Cellulaires Probabilistes : mesures stationnaires, mesures de Gibbs associées et ergodicité , 2002 .