Soil–structure interaction effects on seismic inelastic analysis of 3-D tunnels

Abstract This paper investigates the importance of seismic soil–structure interaction in three-dimensional lined tunnels, assuming inelastic material behaviour for both the concrete liner and the soft rock type of soil. The seismic response of the soil–structure system is determined by the finite element method (FEM) in the time domain. Viscous absorbing boundaries are used in conjunction with the discretization of the rock medium. Both the rock medium and the concrete liner are assumed to behave inelastically on the basis of the continuum damage mechanics theory. The seismic waves are assumed to have any arbitrary time variation and direction of propagation. The system is analysed with and without soil–structure interaction in order to assess its importance on the response of the system. Through parametric studies, the influence of the most critical parameters affecting the structural response is determined and critically discussed.

[1]  Steven M. Lepi Practical Guide to Finite Elements: A Solid Mechanics Approach , 1998 .

[2]  S. K. Datta,et al.  Three‐Dimensional Motion of Buried Pipeline. I: Analysis , 1986 .

[3]  M. C. Nataraja,et al.  STRESS-STRAIN CURVES FOR STEEL-FIBER REINFORCED CONCRETE UNDER COMPRESSION , 1999 .

[4]  Tsuyoshi Ichimura,et al.  A hybrid multiresolution meshing technique for finite element three‐dimensional earthquake ground motion modelling in basins including topography , 2009 .

[5]  J. Lysmer,et al.  Finite Dynamic Model for Infinite Media , 1969 .

[6]  Anil K. Chopra,et al.  Dynamics of Structures: Theory and Applications to Earthquake Engineering , 1995 .

[7]  Jianlin Wang,et al.  Three-dimensional nonlinear seismic ground motion modeling in basins , 2003 .

[8]  Chih-Chieh Lu,et al.  Seismic capacity assessment of old Sanyi railway tunnels , 2007 .

[9]  Sun-Hoon Kim,et al.  Two‐phase finite element procedures for dynamic analysis of saturated porous media , 2000 .

[10]  S. Kramer Geotechnical Earthquake Engineering , 1996 .

[11]  K. Bathe Finite Element Procedures , 1995 .

[12]  Dimitri E. Beskos,et al.  3-D seismic response analysis of long lined tunnels in half-space , 1996 .

[13]  Jerome J. Connor,et al.  Fracture Mechanics Approach for Failure of Concrete Shear Key. I: Theory , 1993 .

[14]  J. E. Luco,et al.  Seismic response of a cylindrical shell embedded in a layered viscoelastic half‐space. II: Validation and numerical results , 1994 .

[15]  J. Z. Zhu,et al.  The finite element method , 1977 .

[16]  A. H. Shah,et al.  Dynamic stresses and displacements around cylindrical cavities of arbitrary shape , 1984 .

[17]  Dimitri E. Beskos,et al.  Dynamic analysis of large 3‐D underground structures by the bem , 1995 .

[18]  Joseph Penzien,et al.  Seismically induced racking of tunnel linings , 2000 .

[19]  A. Bobet,et al.  Evaluation of Soil-Structure Interaction and Structural Collapse in Daikai Subway Station During Kobe Earthquake , 2006 .

[20]  George D. Manolis,et al.  Seismic analysis of buried pipeline in a 3D soil continuum , 1995 .

[21]  J. Wolf Soil-structure-interaction analysis in time domain , 1988 .

[22]  George D. Manolis,et al.  Boundary element techniques in geomechanics , 1993 .

[23]  Youssef M A Hashash,et al.  Contact interface in seismic analysis of circular tunnels , 2009 .

[24]  Eduardo Kausel,et al.  Transmitting boundaries: A closed-form comparison , 1981 .

[25]  Rui Faria,et al.  Seismic evaluation of concrete dams via continuum damage models , 1995 .

[26]  J. Newell Project Final Report , 2005 .

[27]  J. Lemaître,et al.  Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures , 2005 .

[28]  D. Beskos,et al.  Dynamic elastoplastic analysis by BEM/FEM , 1994 .

[29]  Birger Schmidt,et al.  SEISMIC DESIGN AND ANALYSIS OF UNDERGROUND STRUCTURES , 2001 .

[30]  Stavros A. Anagnostopoulos,et al.  Computer Analysis and Design of Earthquake Resistant Structures: A Handbook , 1997 .

[31]  Emilio Bilotta,et al.  Pseudostatic and dynamic analyses of tunnels in transversal and longitudinal directions , 2007 .

[32]  Jacobo Bielak,et al.  On absorbing boundary conditions for wave propagation , 1988 .

[33]  Daniela Boldini,et al.  Numerical modelling of the transverse dynamic behaviour of circular tunnels in clayey soils , 2009 .

[34]  J. E. Luco,et al.  Seismic response of a cylindrical shell embedded in a layered viscoelastic half‐space. I: Formulation , 1994 .

[35]  Ioannis Anastasopoulos,et al.  Response of three Athens metro underground structures in the 1999 Parnitha earthquake , 2005 .

[36]  V. W. Lee,et al.  RESPONSE OF TUNNELS TO INCIDENT SH-WAVES , 1979 .

[37]  D. Beskos,et al.  Dynamic Response of 3-D Damaged Solids and Structures by BEM , 2002 .

[38]  H. Saunders Book Reviews : FINITE ELEMENT ANALYSIS FUNDAMENTALS R.H. Gallagher Prentice Hall, Inc., Englewood Cliffs, New Jersey (1975) , 1977 .

[39]  Lidija Zdravković,et al.  Case study on seismic tunnel response , 2008 .

[40]  Dimitri Beskos,et al.  A Simple Concrete Damage Model for Dynamic FEM Applications , 2001, Int. J. Comput. Eng. Sci..

[41]  I. Lee,et al.  UNIFIED BOUNDARY FOR FINITE DYNAMIC MODELS , 1976 .

[42]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .