Higher Order Positive Semidefinite Diffusion Tensor Imaging

Due to the well-known limitations of diffusion tensor imaging, high angular resolution diffusion imaging (HARDI) is used to characterize non-Gaussian diffusion processes. One approach to analyzing HARDI data is to model the apparent diffusion coefficient (ADC) with higher order diffusion tensors. The diffusivity function is positive semidefinite. In the literature, some methods have been proposed to preserve positive semidefiniteness of second order and fourth order diffusion tensors. None of them can work for arbitrarily high order diffusion tensors. In this paper, we propose a comprehensive model to approximate the ADC profile by a positive semidefinite diffusion tensor of either second or higher order. We call this the positive semidefinite diffusion tensor (PSDT) model. PSDT is a convex optimization problem with a convex quadratic objective function constrained by the nonnegativity requirement on the smallest Z-eigenvalue of the diffusivity function. The smallest Z-eigenvalue is a computable measure of the extent of positive definiteness of the diffusivity function. We also propose some other invariants for the ADC profile analysis. Experiment results show that higher order tensors could improve the estimation of anisotropic diffusion and that the PSDT model can depict the characterization of diffusion anisotropy which is consistent with known neuroanatomy.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[3]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[4]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[5]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[6]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[7]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[8]  Jean-Philippe Vial,et al.  Convex nondifferentiable optimization: A survey focused on the analytic center cutting plane method , 2002, Optim. Methods Softw..

[9]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[10]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[11]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[12]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[13]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[14]  Rachid Deriche,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[15]  Zhizhou Wang,et al.  A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI , 2004, IEEE Transactions on Medical Imaging.

[16]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[17]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[18]  B. Vemuri,et al.  Generalized scalar measures for diffusion MRI using trace, variance, and entropy , 2005, Magnetic resonance in medicine.

[19]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[20]  R. Deriche,et al.  Apparent diffusion coefficients from high angular resolution diffusion imaging: Estimation and applications , 2006, Magnetic resonance in medicine.

[21]  Rachid Deriche,et al.  Statistics on the Manifold of Multivariate Normal Distributions: Theory and Application to Diffusion Tensor MRI Processing , 2006, Journal of Mathematical Imaging and Vision.

[22]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[23]  Baba C. Vemuri,et al.  A novel tensor distribution model for the diffusion-weighted MR signal , 2007, NeuroImage.

[24]  L. Qi,et al.  The degree of the E-characteristic polynomial of an even order tensor , 2007 .

[25]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[26]  Baba C. Vemuri,et al.  Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI , 2007, IPMI.

[27]  Philip A. Cook,et al.  Exploiting peak anisotropy for tracking through complex structures , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[28]  L. Qi Eigenvalues and invariants of tensors , 2007 .

[29]  Pierrick Coupé,et al.  Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI , 2008, MICCAI.

[30]  Rachid Deriche,et al.  Impact of Rician Adapted Non-Local Means Filtering on HARDI , 2008, MICCAI.

[31]  Luke Bloy,et al.  On Computing the Underlying Fiber Directions from the Diffusion Orientation Distribution Function , 2008, MICCAI.

[32]  Rachid Deriche,et al.  Riemannian Framework for Estimating Symmetric Positive Definite 4th Order Diffusion Tensors , 2008, MICCAI.

[33]  Liqun Qi,et al.  D-eigenvalues of diffusion kurtosis tensors , 2008 .

[34]  Rachid Deriche,et al.  Mathematical methods for diffusion MRI processing , 2009, NeuroImage.

[35]  Baba C. Vemuri,et al.  Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.

[36]  Fei Wang,et al.  Z-eigenvalue methods for a global polynomial optimization problem , 2009, Math. Program..

[37]  L. Qi,et al.  Principal invariants and inherent parameters of diffusion kurtosis tensors , 2009 .