Predicted Mobile Data Offloading for Mobile Edge Computing Systems

Mobile Edge Computing (MEC) has emerged as a promising technology to meet with the high data rate, real-time transmission, and huge computation requirements for the ever growing future wireless terminals, such as virtual reality devices, augmented reality, and the Internet of Vehicles. Due to the limitation of licensed bandwidth resources, mobile data offloading should be considered. On the other hand, WiFi AP that works on the abundant unlicensed spectrum can provide good wireless services under light-loaded areas. Therefore, in this paper we leverage WiFi AP to offload some devices from SBS. To effectively perform the offloading process, we build a multi-LSTM based deep-learning algorithm to predict the traffic of SBS. According to the prediction results, an offline mobile data offloading strategy has been proposed, which has been obtained through cross entropy method. Simulation results demonstrate the efficiency of our prediction model and offloading strategy.

[1]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[2]  Kai-Ten Feng,et al.  Energy-Efficient Channel Access for Dual-Band Small Cell Networks , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[3]  Yongmin Zhang,et al.  Optimal Cooperative Wireless Communication for Mobile User Data Offloading , 2018, IEEE Access.

[4]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[5]  Xing Zhang,et al.  A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications , 2017, IEEE Access.

[6]  Jun Guo,et al.  Computation offloading considering fronthaul and backhaul in small-cell networks integrated with MEC , 2017, 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS).

[7]  Lin X. Cai,et al.  QoS-Based Incentive Mechanism for Mobile Data Offloading , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[8]  Hamid Aghvami,et al.  A survey on mobile data offloading: technical and business perspectives , 2013, IEEE Wireless Communications.

[9]  Mehdi Bennis,et al.  Toward Interconnected Virtual Reality: Opportunities, Challenges, and Enablers , 2016, IEEE Communications Magazine.

[10]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[11]  Dario Pompili,et al.  Collaborative Mobile Edge Computing in 5G Networks: New Paradigms, Scenarios, and Challenges , 2016, IEEE Communications Magazine.