An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures.

Silicon nanowire and nanopore arrays promise to reduce manufacturing costs and increase the power conversion efficiency of photovoltaic devices. So far, however, photovoltaic cells based on nanostructured silicon exhibit lower power conversion efficiencies than conventional cells due to the enhanced photocarrier recombination associated with the nanostructures. Here, we identify and separately measure surface recombination and Auger recombination in wafer-based nanostructured silicon solar cells. By identifying the regimes of junction doping concentration in which each mechanism dominates, we were able to design and fabricate an independently confirmed 18.2%-efficient nanostructured 'black-silicon' cell that does not need the antireflection coating layer(s) normally required to reach a comparable performance level. Our results suggest design rules for efficient high-surface-area solar cells with nano- and microstructured semiconductor absorbers.

[1]  Martin Stutzmann,et al.  Black nonreflecting silicon surfaces for solar cells , 2006 .

[2]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[3]  Krishna C. Saraswat,et al.  Two-dimensional thermal oxidation of silicon. II. Modeling stress effects in wet oxides , 1988 .

[4]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[5]  K. Saraswat,et al.  Two-dimensional thermal oxidation of silicon—I. Experiments , 1987, IEEE Transactions on Electron Devices.

[6]  A. Cuevas,et al.  Surface recombination velocity of highly doped n‐type silicon , 1996 .

[7]  Scott Ward,et al.  Nanostructured black silicon and the optical reflectance of graded-density surfaces , 2009 .

[8]  Richard M. Swanson,et al.  Studies of diffused phosphorus emitters: saturation current, surface recombination velocity, and quantum efficiency , 1990 .

[9]  Gwonjong Yu,et al.  Black surface structures for crystalline silicon solar cells , 2009 .

[10]  Yoshiaki Kanamori,et al.  Wide-Angle Antireflection Effect of Subwavelength Structures for Solar Cells , 2007 .

[11]  G. Cody,et al.  Optical reflectance and transmission of a textured surface , 1977 .

[12]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[13]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[14]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[15]  Armin G. Aberle,et al.  Crystalline silicon solar cells : advanced surface passivation and analysis , 1999 .

[16]  Xiaolin Zheng,et al.  Vertical transfer of uniform silicon nanowire arrays via crack formation. , 2011, Nano letters.

[17]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[18]  M. Green Solar Cells : Operating Principles, Technology and System Applications , 1981 .

[19]  Paul Stradins,et al.  Efficient black silicon solar cell with a density-graded nanoporous surface: Optical properties, performance limitations, and design rules , 2009 .

[20]  Roger Fabian W. Pease,et al.  Self‐limiting oxidation for fabricating sub‐5 nm silicon nanowires , 1994 .

[21]  Nathan S. Lewis,et al.  Si microwire-array solar cells , 2010 .

[22]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[23]  Gang Chen,et al.  Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. , 2010, Nano letters.

[24]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[25]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[26]  H. Branz,et al.  Hot-wire chemical vapor deposition of epitaxial film crystal silicon for photovoltaics , 2011 .

[27]  Fatima Toor,et al.  Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells , 2011 .

[28]  E. Mazur,et al.  MICROSTRUCTURING OF SILICON WITH FEMTOSECOND LASER PULSES , 1998 .

[29]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[30]  Yossi Rosenwaks,et al.  Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy , 2009 .