Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5

[1]  Jeff Sakamoto,et al.  Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte , 2018, Journal of Power Sources.

[2]  Jie Xiao,et al.  The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries , 2018 .

[3]  Chunsheng Wang,et al.  Suppressing Li Dendrite Formation in Li2S‐P2S5 Solid Electrolyte by LiI Incorporation , 2018 .

[4]  Kota Suzuki,et al.  All-Solid-State Batteries with Thick Electrode Configurations. , 2018, The journal of physical chemistry letters.

[5]  Asma Sharafi,et al.  Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte , 2017 .

[6]  N. Phuc,et al.  Fast synthesis of Li2S–P2S5–LiI solid electrolyte precursors , 2017 .

[7]  Donald J. Siegel,et al.  Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12 , 2017 .

[8]  Wolfgang G. Zeier,et al.  Interfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes , 2017 .

[9]  Y. Chiang,et al.  Mechanism of Lithium Metal Penetration through Inorganic Solid Electrolytes , 2017 .

[10]  Yue Qi,et al.  Simulation of the effect of contact area loss in all-solid-state Li-ion batteries , 2017 .

[11]  J. Janek,et al.  Li4PS4I: A Li+ Superionic Conductor Synthesized by a Solvent-Based Soft Chemistry Approach , 2017 .

[12]  Peng Long,et al.  High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. , 2016, Nano letters.

[13]  Yutao Li,et al.  Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries. , 2016, Angewandte Chemie.

[14]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[15]  Wolfgang G. Zeier,et al.  Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode , 2016 .

[16]  Sebastian Wenzel,et al.  Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte , 2016 .

[17]  X. Lü,et al.  Antiperovskite Li3OCl Superionic Conductor Films for Solid‐State Li‐Ion Batteries , 2016, Advanced science.

[18]  K. Reuter,et al.  Interfacial challenges in solid-state Li ion batteries. , 2015, The journal of physical chemistry letters.

[19]  Yizhou Zhu,et al.  Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations. , 2015, ACS applied materials & interfaces.

[20]  Young Jin Nam,et al.  Issues and Challenges for Bulk‐Type All‐Solid‐State Rechargeable Lithium Batteries using Sulfide Solid Electrolytes , 2015 .

[21]  G. Sahu,et al.  An iodide-based Li7P2S8I superionic conductor. , 2015, Journal of the American Chemical Society.

[22]  Lei Cheng,et al.  Effect of surface microstructure on electrochemical performance of garnet solid electrolytes. , 2015, ACS applied materials & interfaces.

[23]  A. Hayashi,et al.  Evaluation of young’s modulus of Li2S–P2S5–P2O5 oxysulfide glass solid electrolytes , 2014 .

[24]  Changbao Zhu,et al.  A new ultrafast superionic Li-conductor: ion dynamics in Li11Si2PS12 and comparison with other tetragonal LGPS-type electrolytes. , 2014, Physical chemistry chemical physics : PCCP.

[25]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[26]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[27]  John Newman,et al.  Experimental and Theoretical Investigation of Solid-Electrolyte-Interphase Formation Mechanisms on Glassy Carbon , 2013 .

[28]  A. Hayashi,et al.  Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery , 2013, Scientific Reports.

[29]  Hikari Sakaebe,et al.  Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface , 2013 .

[30]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[31]  M. Hirayama,et al.  A lithium superionic conductor. , 2011, Nature materials.

[32]  A. Hayashi,et al.  Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere , 2011 .

[33]  M. Osada,et al.  Interfacial modification for high-power solid-state lithium batteries , 2008 .

[34]  J. Rogers,et al.  Comparison of multiwalled carbon nanotubes and carbon black as percolative paths in aqueous-based natural graphite negative electrodes with high-rate capability for lithium-ion batteries , 2008 .

[35]  Minoru Osada,et al.  LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries , 2007 .

[36]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[37]  J. Tarascon,et al.  Lithium metal stripping/plating mechanisms studies: A metallurgical approach , 2006 .

[38]  Sossina M. Haile,et al.  Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria , 2005 .

[39]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[40]  T. Minami,et al.  Preparation of Li2S–P2S5 Amorphous Solid Electrolytes by Mechanical Milling , 2004 .

[41]  J. Bates Thin-Film Lithium and Lithium-Ion Batteries , 2000 .

[42]  G. Nazri Preparation, structure and ionic conductivity of lithium phosphide , 1989 .

[43]  T. Jow,et al.  Interface between solid anode and solid electrolyte-effect of pressure on Li/LiI(Al2O3) interface , 1983 .

[44]  G. Robert,et al.  Superionic conduction in Li2S - P2S5 - LiI - glasses , 1981 .

[45]  U. Alpen,et al.  The behaviour of the lithium/lithium-nitride interface under anodic polarisation , 1981 .

[46]  R. Armstrong The metal-solid electrolyte interphase , 1974 .

[47]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[48]  R. Armstrong,et al.  The impedance of the sodium β-alumina interphase , 1973 .

[49]  H. Thirsk,et al.  The kinetics of the silver/silver rubidium iodide electrode , 1971 .

[50]  Yunhui Gong,et al.  High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture , 2019, Materials Today.

[51]  J. Dahn,et al.  Studies of Gas Generation, Gas Consumption and Impedance Growth in Li-Ion Cells with Carbonate or Fluorinated Electrolytes Using the Pouch Bag Method , 2017 .

[52]  Xiaoxiong Xu,et al.  Lithium Superionic Conducting Oxysulfide Solid Electrolyte with Excellent Stability against Lithium Metal for All-Solid-State Cells , 2016 .

[53]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[54]  H. Thirsk,et al.  Effect of diffusion through solution and along surface on electrocrystallization processes. Part 2: Faradaic impedance , 1967 .

[55]  H. Thirsk,et al.  Effect of diffusion through the solution and along surface on electrocrystallization processes. Part 3.—Influence of finite rate of lattice formation , 1967 .