Pseudoredundant vacuum energy

We discuss models that can account for today's dark energy. The underlying cosmological constant may be Planck scale but starts as a redundant coupling which can be eliminated by a field redefinition. The observed vacuum energy arises when the redundancy is explicitly broken, say by a nonminimal coupling to curvature. We give a recipe for constructing models, including R+1/R-type models, that realize this mechanism and satisfy all solar system constraints on gravity. A similar model, based on Gauss-Bonnet gravity, provides a technically natural explanation for dark energy and exhibits an interesting seesaw behavior: a large underlying cosmological constant gives rise to both low- and high-curvature solutions. Such models could be statistically favored in the string landscape.

[1]  I. Neupane Constraints on Gauss-Bonnet Cosmologies , 2007, 0711.3234.

[2]  Wayne Hu,et al.  Models of f(R) Cosmic Acceleration that Evade Solar-System Tests , 2007, 0705.1158.

[3]  L. Amendola,et al.  Solar system constraints on Gauss–Bonnet mediated dark energy , 2007, 0704.0175.

[4]  Tristan L. Smith,et al.  Solar System constraints to general f(R) gravity , 2006, astro-ph/0611867.

[5]  Michael R. Douglas,et al.  Flux Compactification , 2006, hep-th/0610102.

[6]  J. Polchinski The Cosmological Constant and the String Landscape , 2006, hep-th/0603249.

[7]  R. Woodard Avoiding dark energy with 1/r modifications of gravity , 2006, astro-ph/0601672.

[8]  S. D. Odintsov,et al.  INTRODUCTION TO MODIFIED GRAVITY AND GRAVITATIONAL ALTERNATIVE FOR DARK ENERGY , 2006, hep-th/0601213.

[9]  Stefan Nobbenhuis Categorizing Different Approaches to the Cosmological Constant Problem , 2004, gr-qc/0411093.

[10]  S. Carroll,et al.  Cosmology of generalized modified gravity models , 2004, Physical Review D.

[11]  Andrei Linde,et al.  Dark energy equation of state and anthropic selection , 2003, hep-th/0310034.

[12]  S. Nojiri,et al.  Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration , 2003, hep-th/0307288.

[13]  T. Chiba 1/R gravity and scalar-tensor gravity , 2003, astro-ph/0307338.

[14]  S. Carroll,et al.  Is Cosmic Speed-Up Due to New Gravitational Physics? , 2003, astro-ph/0306438.

[15]  G. Cleaver Developments in string cosmology , 2003, astro-ph/0303499.

[16]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[17]  R. Bousso,et al.  Quantization of four-form fluxes and dynamical neutralization of the cosmological constant , 2000, hep-th/0004134.

[18]  A. Starobinsky,et al.  Reconstruction of a scalar-tensor theory of gravity in an accelerating universe , 2000, Physical review letters.

[19]  T. Chiba Quintessence, the gravitational constant, and gravity , 1999, gr-qc/9903094.

[20]  S. Weinberg Theories of the Cosmological Constant , 1996, astro-ph/9610044.

[21]  O. W. Greenberg,et al.  The Quantum Theory of Fields, Vol. 1: Foundations , 1995 .

[22]  Andrei Linde,et al.  Inflation and Quantum Cosmology , 1990 .

[23]  B. Zwiebach Curvature Squared Terms and String Theories , 1985 .

[24]  I. Antoniadis,et al.  On the cosmological constant problem , 1984 .

[25]  K. Stelle Classical gravity with higher derivatives , 1978 .

[26]  M. Scully,et al.  The Quantum Theory of Light , 1974 .

[27]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[28]  P. Binétruy The cosmological constant , 1999 .

[29]  S. Weinberg The Cosmological Constant Problems , 2000 .