Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame

Three aspects of turbulent combustion modelling are discussed to provide an overview of numerical simulation of turbulent flames. The three examples reported concern direct numerical simulation (DNS), large eddy simulation (LES) and Reynolds average Navier–Stokes (RANS) calculations. Recent developments in DNS deal with the possibility of performing a full simulation of a premixed turbulent V-flame evolving in grid turbulence. The DNS data are useful to improve modelling of turbulent micromixing, in terms of the scalar dissipation rate of a reaction progress variable. Many combustion systems operate with reactants that have been partially premixed by unsteady large-scale motions. In this context, LES of partially premixed turbulent-lifted flame bases are reported, with a subgrid procedure that accounts for the combination of premixed and nonpremixed combustion regimes observed in such flames. Then, some developments are proposed to improve the prediction capabilities of RANS methods applied to complex com...

[1]  J. Réveillon,et al.  Direct Numerical Simulation of Statistically Stationary One- and Two-Phase Turbulent Combustion: A Turbulent Injection Procedure , 2004 .

[2]  R. Fox Computational Models for Turbulent Reacting Flows , 2003 .

[3]  Nasser Darabiha,et al.  Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM , 2003 .

[4]  Luc Vervisch,et al.  Effects of heat release in laminar diffusion flames lifted on round jets , 2003 .

[5]  Jacqueline H. Chen,et al.  Direct numerical simulation of autoignition in non- homogeneous hydrogen-air mixtures , 2003 .

[6]  I. Puri,et al.  Response of flame speed to positively and negatively curved premixed flames , 2003 .

[7]  K. Bray,et al.  Partially premixed flamelets in LES of nonpremixed turbulent combustion , 2002 .

[8]  Hong G. Im,et al.  Preferential diffusion effects on the burning rate of interacting turbulent premixed hydrogen-air flames , 2002 .

[9]  Parviz Moin,et al.  ADVANCES IN LARGE EDDY SIMULATION METHODOLOGY FOR COMPLEX FLOWS , 2002, Proceeding of Second Symposium on Turbulence and Shear Flow Phenomena.

[10]  L. Vervisch,et al.  Diffusion edge-flame: approximation of the flame tip Damköhler number , 2002 .

[11]  Kang Y. Huh,et al.  Use of the conditional moment closure model to predict NO formation in a turbulent CH4/H2 flame over a bluff-body , 2002 .

[12]  R. Barlow,et al.  Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames , 2001 .

[13]  de Lph Philip Goey,et al.  Modeling of complex premixed burner systems by using flamelet-generated manifolds , 2001 .

[14]  R. Bilger,et al.  Conditional moment closure (CMC) predictions of a turbulent methane-air jet flame , 2001 .

[15]  L. Vervisch,et al.  Edge flames and partially premixed combustion in diffusion flame quenching , 2001 .

[16]  S. Ghosal,et al.  Stability diagram for lift-off and blowout of a round jet laminar diffusion flame , 2001 .

[17]  B. Bennett,et al.  Computational and experimental study of axisymmetric coflow partially premixed methane/air flames , 2000 .

[18]  Stephen B. Pope,et al.  PDF calculations of turbulent nonpremixed flames with local extinction , 2000 .

[19]  C. Carter,et al.  Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame , 2000 .

[20]  Ishwar K. Puri,et al.  Flame stretch effects on partially premixed flames , 2000 .

[21]  H. Pitsch,et al.  Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D) , 2000 .

[22]  R. V. Ravikrishna,et al.  Laser-induced fluorescence measurements and modeling of nitric oxide in counterflow partially premixed flames , 2000 .

[23]  Luc Vervisch,et al.  Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation , 2000, Journal of Fluid Mechanics.

[24]  Vincent Guinot,et al.  High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes , 2000 .

[25]  F. Ducros,et al.  A thickened flame model for large eddy simulations of turbulent premixed combustion , 2000 .

[26]  C. McEnally,et al.  Experimental study of nonfuel hydrocarbons and soot in coflowing partially premixed ethylene/air flames , 2000 .

[27]  Robert W. Bilger,et al.  Modeling soot formation in turbulent methane–air jet diffusion flames , 2000 .

[28]  Taewoo Lee,et al.  Temperature, velocity, and nox/co emission measurements in turbulent flames: effects of partial premixing with central fuel injection , 2000 .

[29]  D. Haworth,et al.  Numerical simulation of turbulent propane–air combustion with nonhomogeneous reactants , 2000 .

[30]  A. Klimenko,et al.  Conditional moment closure for turbulent combustion , 1999 .

[31]  I. Puri,et al.  Gravity effects on triple flames: Flame structure and flow instability , 1999 .

[32]  C. Carter,et al.  Observations on the leading edge in lifted flame stabilization , 1999 .

[33]  D. Greenhalgh,et al.  The structure and stability of the laminar counter-flow partially premixed methane/air triple flame , 1999 .

[34]  Forman A. Williams,et al.  NOx formation in two-stage methane–air flames , 1999 .

[35]  S. Pope,et al.  Comparison of mixing model performance for nonpremixed turbulent reactive flow , 1999 .

[36]  S. Pope,et al.  PDF simulations of turbulent combustion incorporating detailed chemistry , 1999 .

[37]  Stephen B. Pope,et al.  A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees , 1998 .

[38]  I. Puri,et al.  The structure of triple flames stabilized on a slot burner , 1998 .

[39]  Robert W. Schefer,et al.  Mechanism of Flame Stabilization in Turbulent, Lifted-Jet Flames , 1998 .

[40]  M. G. Mungal,et al.  Instantaneous flame-stabilization velocities in lifted-jet diffusion flames , 1997 .

[41]  Taewoo Lee,et al.  Effects of variable partial premixing on turbulent jet flame structure , 1997 .

[42]  Luc Vervisch,et al.  Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches , 1995 .

[43]  A. Liñán,et al.  Effects of heat release on triple flames , 1995 .

[44]  C. Meneveau,et al.  A Lagrangian dynamic subgrid-scale model of turbulence , 1994, Journal of Fluid Mechanics.

[45]  Thierry Mantel,et al.  A new model of premixed wrinkled flame propagation based on a scalar dissipation equation , 1994 .

[46]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[47]  T. Poinsot Boundary conditions for direct simulations of compressible viscous flows , 1992 .

[48]  Ulrich Maas,et al.  Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , 1992 .

[49]  R. Borghi,et al.  Turbulent premixed combustion: Further discussions on the scales of fluctuations , 1990 .

[50]  J. Dold Flame propagation in a nonuniform mixture: Analysis of a slowly varying Triple Flame , 1989 .

[51]  Stephen B. Pope,et al.  An explanation of the turbulent round-jet/plane-jet anomaly , 1978 .

[52]  K. Bray,et al.  A unified statistical model of the premixed turbulent flame , 1977 .

[53]  Amable Liñán,et al.  The asymptotic structure of counterflow diffusion flames for large activation energies , 1974 .

[54]  Bassam B. Dally,et al.  Two-photon laser-induced fluorescence measurement of CO in turbulent non-premixed bluff body flames , 2003 .

[55]  Rodney O. Fox,et al.  Computational Models for Turbulent Reacting Flows: PDF methods for turbulent reacting flows , 2003 .

[56]  Laurent Blin,et al.  Large eddy simulation of turbulent flows in reversing systems , 2003 .

[57]  Stephen B. Pope,et al.  PDF modeling of a bluff-body stabilized turbulent flame , 2003 .

[58]  Cecile Devaud,et al.  Assessment of the applicability of conditional moment closure to a lifted turbulent flame: first order model , 2003 .

[59]  Johannes Janicka,et al.  A Turbulence-Chemistry Interaction Model Based on a Multivariate Presumed Beta-PDF Method for Turbulent Flames , 2002 .

[60]  Dominique Thévenin,et al.  Autoignition of turbulent non-premixed flames investigated using direct numerical simulations , 2002 .

[61]  T. Mahmud,et al.  Prediction of lifted, non-premixed turbulent flames using a mixedness-reactedness flamelet model with radiation heat loss , 2002 .

[62]  T. Takeno,et al.  A numerical analysis of the structure of a turbulent hydrogen jet lifted flame , 2002 .

[63]  R. Hilbert,et al.  Partially-Premixed Combustion during Autoignition of a Turbulent Nonpremixed Flame , 2001 .

[64]  I. Puri,et al.  A numerical and experimental investigation of “inverse” triple flames , 2001 .

[65]  T. Poinsot,et al.  Theoretical and numerical combustion , 2001 .

[66]  C. Meneveau,et al.  Scale-Invariance and Turbulence Models for Large-Eddy Simulation , 2000 .

[67]  Nasser Darabiha,et al.  Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion , 2000 .

[68]  A. Cessou,et al.  Statistical flow dynamic properties conditioned on the oscillating stabilization location of turbulent lifted flame , 2000 .

[69]  N. Peters Turbulent Combustion: Nonpremixed turbulent combustion , 2000 .

[70]  Christopher J. Rutland,et al.  Turbulence, scalar transport, and reaction rates in flame-wall interaction , 1998 .

[71]  A. Liñán,et al.  TRIPLE FLAMES IN MIXING LAYERS WITH NONUNITY LEWIS NUMBERS , 1998 .

[72]  P. Lindstedt Modeling of the chemical complexities of flames , 1998 .

[73]  R. Barlow,et al.  Effects of turbulence on species mass fractions in methane/air jet flames , 1998 .

[74]  L. Vervisch,et al.  Investigating the effects of edge flames in liftoff in non-premixed turbulent combustion , 1998 .

[75]  K. Bray,et al.  Vorticity and scalar transport in premixed turbulent combustion , 1998 .

[76]  D. Veynante,et al.  Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion , 1998 .

[77]  Robert J. Kee,et al.  PREMIX :A F ORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames , 1998 .

[78]  T. Poinsot,et al.  DIRECT NUMERICAL SIMULATION OF NON-PREMIXED TURBULENT FLAMES , 1998 .

[79]  Philip H. Gaskell,et al.  The mathematical modeling of liftoff and blowoff of turbulent non-premixed methane jet flames at high strain rates , 1998 .

[80]  Stephen B. Pope,et al.  Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation , 1997 .

[81]  D. Veynante,et al.  Experimental analysis of flame surface density models for premixed turbulent combustion , 1996 .

[82]  T. Takeno,et al.  A numerical study on flame stability at the transition point of jet diffusion flames , 1996 .

[83]  J. Buckmaster,et al.  Edge-flame-holding , 1996 .

[84]  T. Poinsot Using direct numerical simulations to understand premixed turbulent combustion , 1996 .

[85]  K.N.C. Bray,et al.  The challenge of turbulent combustion , 1996 .

[86]  Jerzy Chomiak,et al.  Flame propagation along a fine vortex tube , 1995 .

[87]  Thierry Poinsot,et al.  A Study of the Laminar Flame Tip and Implications for Premixed Turbulent Combustion , 1992 .

[88]  Stephen B. Pope,et al.  Computations of turbulent combustion: Progress and challenges , 1991 .

[89]  P. Givi Model-free simulations of turbulent reactive flows , 1989 .

[90]  William M. Pitts,et al.  Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames , 1989 .

[91]  Paul A. Libby,et al.  The Interaction Between Turbulence and Chemistry in Premixed Turbulent Flames , 1989 .

[92]  R. Borghi Turbulent combustion modelling , 1988 .

[93]  S. Pope PDF methods for turbulent reactive flows , 1985 .

[94]  H. Phillips Flame in a buoyant methane layer , 1965 .